Ground motion prediction equations 1964–2021

John Douglas
Department of Civil and Environmental Engineering
University of Strathclyde
James Weir Building
75 Montrose Street
Glasgow
G1 1XJ
United Kingdom
john.douglas@strath.ac.uk
https://www.strath.ac.uk/staff/douglasjohndr/

Synopsis

This online resource summarizes all empirical ground-motion prediction equations (GMPEs), to estimate earthquake peak ground acceleration (PGA) and elastic response spectral ordinates, published between 1964 and early 2021 (inclusive). This resource replaces: the Imperial College London reports of Douglas (2001a), Douglas (2002) and Douglas (2004a), which provide a summary of all GMPEs from 1964 until the end of 2003; the BRGM report of Douglas (2006), which summarizes all GMPEs from 2004 to 2006 (plus some earlier models); the report of Douglas (2008), concerning GMPEs published in 2007 and 2008 (plus some earlier models); and the report of Douglas (2011), which superseded all these reports and covered the period up to 2010. It is planned to continually update this website when new GMPEs are published or errors/omissions are discovered. In addition, this resource lists published GMPEs derived from simulations, although details are not given since the focus here is on empirical models. Studies that only present graphs are only listed, as are those non-parametric formulations that provide predictions for different combinations of distance and magnitude because these are more difficult to use for seismic hazard analysis than those which give a single formula. Equations for single earthquakes or for earthquakes of approximately the same size are excluded due to their limited usefulness. Those relations based on conversions from macroseismic intensity are only listed. Finally, conditional ground-motion models (e.g. Sung, Abrahamson, and Huang 2021), which provide predictions for a secondary intensity measure conditional on a primary measure, are excluded due to a lack of resources to identify and summarise these models.

This website summarizes, in total, the characteristics of 485 empirical GMPEs for the prediction of PGA and 316 empirical models for the prediction of elastic response spectral ordinates. In addition, 87 simulation-based models to estimate PGA and elastic response spectral ordinates are listed but no details are given. 52 complete stochastic models, 45 GMPEs derived in other ways, 39 non-parametric models and 18 backbone (G. M. Atkinson, Bommer, and Abrahamson 2014; Douglas 2018b) models are also listed. Finally, the table provided by Douglas (2012) is expanded and updated to include the general characteristics of empirical GMPEs for the prediction of: Arias intensity (34 models), cumulative absolute velocity (12 models), Fourier spectral amplitudes (19 models), maximum absolute unit elastic input energy (6 models), inelastic response spectral ordinates (6 models), Japanese Meterological Agency seismic intensity (5 models), macroseismic intensity (52 models, commonly called intensity prediction equations), mean period (6 models), peak ground velocity (147 models), peak ground displacement (37 models), relative significant duration (20 models) and vertical-to-horizontal response spectral ratio (13 models). This report will be updated roughly once every six months.

It should be noted that the size of this resource means that it may contain some errors or omissions. The boundaries between empirical, simulation-based and non-parametric ground-motion models are not always clear so I may classify a study differently than expected. No discussion of the merits, ranges of applicability or limitations of any of the relationships is included herein except those mentioned by the authors or inherent in the data used. This compendium is not a critical review of the models.

This compilation was made when I was employed at: Imperial College London, University of Iceland, BRGM and University of Strathclyde. I thank: my current and former employers for their support, many people for references, suggestions and encouragement while producing this resource, and the developers of LaTeXand associated packages, without whom this report would never have been written.

If required, you can cite this resource in the following way:

Douglas, J. (2022), Ground motion prediction equations 1964–2021, http://www.gmpe.org.uk.

Introduction

ESEE Report 01-1 ‘A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969 to 2000)’ (Douglas 2001a) was completed and released in January 2001. A report detailing errata of this report and additional studies was released in October 2002 (Douglas 2002). These two reports were used by Douglas (2003) as a basis for a review of previous ground-motion prediction equations (GMPEs). Following the release of these two reports, some further minor errors were found in the text and tables of the original two reports, and additional studies were found in the literature that were not included in ESEE 01-1 or the follow-on report. Also some new studies were published. Rather than produce another report listing errata and additions it was decided to produce a new report that included details on all the studies listed in the first two reports (with the corrections made) and also information on the additional studies. This report was published as a research report of Imperial College London at the beginning of 2004 (Douglas 2004a). At the end of 2006 a BRGM report was published (Douglas 2006) detailing studies published in 2004–2006 plus a few earlier models that had been missed in previous reports. Finally, at the end of 2008 another BRGM report was published (Douglas 2008) containing summaries of GMPEs from 2007 and 2008 and some additional earlier models that had been recently uncovered.

Because of the large number of new GMPEs published in 2009 and 2010 and the discovery of some additional earlier studies and various errors in the previous reports, it was decided to publish a new comprehensive report to replace the previous reports (Douglas 2001a, 2002, 2004a, 2006, 2008) containing all previous reports plus additional material rather than publish yet another addendum to the 2004 report. It was also decided that, for completeness and due to the lack of another comprehensive and public source for this information, to include a list of GMPEs developed using other methods than regression of strong-motion data, e.g. simulation-based models (e.g. Douglas and Aochi 2008). However, due to the complexity of briefly summarizing these models it was decided not to provide details but only references. This report was published as Douglas (2011).

In order to make the compendium easier to use and to update in the future it was decided to port the entire report to html using the LaTeXTeX 4ht package as well as add models from 2011 to 2021 and some older GMPEs that were recently found. Finally, GMPEs for intensity measures other than PGA and elastic response spectral ordinates are listed but details are not given (although some of these correspond to models for PGA and elastic spectral ordinates and hence they are summarized elsewhere in this compendium).

This report summarizes, in total, the characteristics of 485 empirical GMPEs for the prediction of peak ground acceleration (PGA) and 317 models for the prediction of elastic response spectral ordinates as well as 34 models for the prediction of Arias intensity, 12 models for cumulative absolute velocity, 19 models for Fourier spectral amplitudes, 6 models for maximum absolute unit elastic input energy, 6 models for inelastic response spectral ordinates, 5 models for Japanese Meterological Agency seismic intensity, 52 models1 (intensity prediction equations) for macroseismic intensity, 6 models for mean period, 147 for peak ground velocity, 37 for peak ground displacement, 20 for relative significant duration and 13 models for vertical-to-horizontal response spectral ratio. With this many GMPEs available it is important to have criteria available for the selection of appropriate models for seismic hazard assessment in a given region — Cotton et al. (2006) and, more recently, Bommer et al. (2010) suggest selection requirements for the choice of models. For the selection of GMPEs routinely applicable to state-of-the-art hazard analyses of ground motions from shallow crustal earthquakes Bommer et al. (2010) summarize their criteria thus.

  1. Model is derived for an inappropriate tectonic environment (such as subduction-zone earthquakes or volcanic regions).

  2. Model not published in a Thomson Reuters ISI-listed peer-reviewed journal (although an exception can be made for an update to a model that did meet this criterion).

  3. The dataset used to derive the model is not presented in an accessible format; the minimum requirement would be a table listing the earthquakes and their characteristics, together with the number of records from each event.

  4. The model has been superseded by a more recent publication.

  5. The model does not provide spectral predictions for an adequate range of response periods, chosen here to be from \(0\) to \(2\,\mathrm{s}\).

  6. The functional form lacks either non-linear magnitude dependence or magnitude-dependent decay with distance.

  7. The coefficients of the model were not determined with a method that accounts for inter-event and intra-event components of variability; in other words, models must be derived using one- or two-stage maximum likelihood approaches or the random effects approach.

  8. Model uses inappropriate definitions for explanatory variables, such as \(M_L\) or \(r_{epi}\), or models site effects without consideration of \(V_{s,30}\).

  9. The range of applicability of the model is too small to be useful for the extrapolations generally required in PSHA: \(M_{\min}>5\), \(M_{\max}<7\), \(R_{\max}<80\,\mathrm{km}\).

  10. Model constrained with insufficiently large dataset: fewer than 10 earthquakes per unit of magnitude or fewer than 100 records per \(100\,\mathrm{km}\) of distance.

Similar criteria could be developed for other types of earthquakes (e.g. subduction). For example, the reader is referred to Stewart et al. (2015) for a discussion of the selection of GMPEs for hazard assessments for the three principal tectonic regimes. Application of such criteria would lead to a much reduced set of models. The aim of this report, however, is not to apply these, or any other, criteria but simply to summarize all models that have been published. Bommer et al. (2010) also note that: ‘[i]f one accepts the general approach presented in this paper, then it becomes inappropriate to develop and publish GMPEs that would subsequently be excluded from use in PSHA [probabilistic seismic hazard analysis] on the basis of not satisfying one or more of the requirements embodied in the criteria.’

Predictions of median ground motions from GMPEs show great dispersion (Douglas 2010a, 2010b, 2012) demonstrating the large epistemic uncertainties involved in the estimation of earthquake shaking. This uncertainty should be accounted for within seismic hazard assessments by, for example, logic trees (e.g. Bommer and Scherbaum 2008).

Other summaries and reviews of GMPEs

A number of reviews of GMPEs have been made in the past that provide a good summary of the methods used, the results obtained and the problems associated with such relations. Trifunac and Brady (1975a, 1976) provide a brief summary and comparison of published relations. McGuire (1976) lists numerous early relations. Idriss (1978) presents a comprehensive review of published attenuation relations up until 1978, including a number which are not easily available elsewhere. Hays (1980) presents a good summary of ground-motion estimation procedures up to 1980. Boore and Joyner (1982) provide a review of attenuation studies published in 1981 and they comment on empirical prediction of strong ground motion in general. Campbell (1985) contains a full survey of attenuation equations up until 1985. Joyner and Boore (1988) give an excellent analysis of ground motion prediction methodology in general, and attenuation relations in particular; Joyner and Boore (1996) update this by including more recent studies. N. N. Ambraseys and Bommer (1995) provide an overview of relations that are used for seismic design in Europe although they do not provide details about methods used. Recent reviews include those by Campbell (2003c, 2003a) and Bozorgnia and Campbell (2004a), which provide the coefficients for a number of commonly-used equations for peak ground acceleration and spectral ordinates, and Douglas (2003). Bommer (2006) discusses some pressing problems in the field of empirical ground-motion estimation. The International Institute of Seismology and Earthquake Engineering provides a useful online resource
http://iisee.kenken.go.jp/eqflow/reference/Start.htm summarising a number of GMPEs (particularly those from Japan) and providing coefficients and an Excel spreadsheet for their evaluation. A recent discussion of current and future trends in ground-motion prediction is provided by Douglas and Edwards (2016).

Summaries and reviews of published ground-motion models for the estimation of strong-motion parameters other than PGA and elastic response spectral ordinates are available2. For example: Bommer and Martı́nez-Pereira (1999), Alarcón (2007) and Bommer, Stafford, and Alarcón (2009) review predictive equations for strong-motion duration; Tromans (2004) summarizes equations for the prediction of PGV and displacement (PGD); Bommer and Alarcón (2006) provide a more recent review of GMPEs for PGV; Hancock and Bommer (2005) discuss available equations for estimating number of effective cycles; Stafford, Berrill, and Pettinga (2009) briefly review GMPEs for Arias intensity; Rathje et al. (2004) summarize the few equations published for the prediction of frequency-content parameters (e.g. predominant frequency); and Cua et al. (2010) review various intensity prediction equations.

GMPEs summarised here

Equations for single earthquakes (e.g. Bozorgnia, Niazi, and Campbell 1995) or for earthquakes of approximately the same size (e.g. Seed et al. 1976; K. Sadigh, Youngs, and Power 1978) are excluded because they lack a magnitude-scaling term and, hence, are of limited use. Also excluded are those originally developed to yield the magnitude of an earthquake (e.g. Espinosa 1980), i.e. the regression is performed the other way round, which should not be used for the prediction of ground motion at a site. The model of Kim and Shin (2017) is not included because it is based on the ratio of the magnitude of the mainshock to an aftershock rather than the magnitude directly. The model of J. X. Zhao and Gerstenberger (2010) is not summarised since it uses recorded motions to estimate motions at sites without observations, within a rapid-response system. Models such as that by Olszewska (2006) and Golik and Mendecki (2012), who use ’source energy logarithms’ to characterize mining-induced events, have been excluded because such a characterization of event size is rare in standard seismic hazard assessments. Similarly, equations derived using data from nuclear tests, such as those reported by Mickey (1971; Hays 1980), are not included. Finally, conditional ground-motion models (e.g. Sung, Abrahamson, and Huang 2021), which provide predictions for a secondary intensity measure conditional on a primary measure, are excluded due to a lack of resources to identify and summarise these models.

Those based on simulated ground motions from stochastic source models (e.g G. M. Atkinson and Boore 1990) and other types of simulations (e.g. Megawati, Pan, and Koketsu 2005), those derived using the hybrid empirical technique (e.g Campbell 2003b; Douglas, Bungum, and Scherbaum 2006), those relations based on intensity measurements (e.g. Battis 1981) and backbone models (G. M. Atkinson, Bommer, and Abrahamson 2014; Douglas 2018b) are listed in Chapter 6 but no details are given because the focus here is on empirical models derived from ground-motion data. Studies using simulation techniques other than the classic stochastic method and which do not provide a closed-form GMPE (e.g. Medel-Vera and Ji 2016) are not listed as they are often difficult to use. Studies which provide graphs to give predictions (e.g. Schnabel and Seed 1973) are only listed and not summarized as are those non-parametric formulations that give predictions for different combinations of distance and magnitude (e.g. Anderson 1997), both of which are generally more difficult to use for seismic hazard analysis than those which report a single formula. For similar reasons, models derived using neural networks (e.g. Güllü and Erçelebi 2007) are only listed.

GMPEs for the prediction of PGA are summarized in Chapters 2 and 3 and those for spectral ordinates are summarized in Chapters 4 and 5. Chapter 6 lists other ground-motion models that are not detailed in the previous chapters. The final chapter (Chapter 7) provides the general characteristics of GMPEs for intensity measures other than PGA and elastic spectral ordinates. All the studies that present the same GMPE are mentioned at the top of the section and in the tables of general characteristics (Illustrations [tab:pga] & [tab:speccomp]). The information contained within each section, and within tables, is the sum of information contained within each of the publications, i.e. not all the information may be from a single source. Note that GMPEs are ordered in chronological order both in the section titles and the order of the sections. Therefore, a well-known model presented in a journal article may not be listed where expected since it had previously been published in a conference proceedings or technical report. To find a given model it is recommended to examine the table of content carefully or apply a keyword search to the PDF. Some models (e.g. Abrahamson and Silva 1997) provide GMPEs for spectral accelerations up to high frequencies (e.g. \(100\,\mathrm{Hz}\)) but do not explicitly state that these equations can be used for the prediction of PGA. Therefore, they are only listed in the chapters dealing with GMPEs for the prediction of spectral ordinates (Chapters 4 and 5) and their coefficients are not given. This should be considered when searching for a particular model.

To make it easier to understand the functional form of each GMPE the equations are given with variable names replacing actual coefficients and the derived coefficients and the standard deviation, \(\sigma\), are given separately (for PGA equations). These coefficients are given only for completeness and if an equation is to be used then the original reference should be consulted. If a coefficient is assumed before the analysis is performed then the number is included directly in the formula.

Obviously all the details from each publication cannot be included in this report because of lack of space but the most important details of the methods and data used are retained. The style is telegraphic and hence phrases such as ‘Note that …’ should be read ‘The authors [of the original model] note that …’. The number of records within each site and source mechanism category are given if this information was reported by the authors of the study. Sometimes these totals were found by counting the numbers in each category using the tables listing the data used and, therefore, they may be inaccurate.

This report contains details of all studies for PGA and response spectra that could be found in the literature (journals, conference proceedings, technical reports and some Ph.D. theses) although some may have been inadvertently missed3. Some of the studies included here have not been seen but are reported in other publications and hence the information given here may not be complete or correct. Since this resource has been written in many distinct periods over almost two decades (2000–2021), the amount of information given for each model varies, as does the style.

In the equations unless otherwise stated, \(D\), \(d\), \(R\), \(r\), \(X\), \(\Delta\) or similar are distance and \(M\) or similar is magnitude and all other independent variables are stated. PGA is peak ground acceleration, PGV is peak ground velocity and PSV is relative pseudo-velocity.

In Tables [tab:pga], [tab:speccomp] and [tab:gmpes] the gross characteristics of the data used and equation obtained are only given for the main equation in each study. The reader should refer to the section on a particular publication or the original reference for information on other equations derived in the study.

In earlier reports the name ‘attenuation relation(ships)’ is used for the models reported. The current de facto standard is to refer to such models as ‘ground motion prediction equations’ (GMPEs) and, therefore, this terminology is adopted here. However, as discussed by Boore and Atkinson (2007 Appendix A) there is some debate over the best name for these models (e.g. ‘ground-motion model’ or ‘ground motion estimation equations’) and some people disagree with the use of the word ‘prediction’ in this context.

No discussion of the merits, ranges of applicability or limitations of any of the relationships is included herein except those mentioned by the authors or inherent in the data used. This report is not a critical review of the models. The ground-motion models are generally reported in the form given in the original references. The boundaries between empirical, simulation-based and non-parametric ground-motion models are not always clear so I may classify a study differently than expected. Note that the size of this report means that it may contain some errors or omissions — the reader is encouraged to consult the original reference if a model is to be used.

Summary of published GMPEs for PGA

Esteva and Rosenblueth (1964)

Kanai (1966)

Milne and Davenport (1969)

Esteva (1970)

Denham and Small (1971)

Davenport (1972)

Denham, Small, and Everingham (1973)

Donovan (1973)

Esteva and Villaverde (1973) & Esteva (1974)

Katayama (1974)

McGuire (1974) & McGuire (1977)

Orphal and Lahoud (1974)

Ahorner and Rosenhauer (1975)

N. N. Ambraseys (1975), N. Ambraseys (1975) & N. N. Ambraseys (1978a)

Shah and Movassate (1975)

Trifunac and Brady (1975a), Trifunac (1976a) & Trifunac and Brady (1976)

Blume (1977)

Gürpinar (1977)

Milne (1977)

Saeki, Katayama, and Iwasaki (1977)

N. N. Ambraseys (1978b)

Donovan and Bornstein (1978)

Faccioli (1978)

Goto et al. (1978)

R. K. McGuire (1978b)

A. Patwardhan, K. Sadigh, I.M. Idriss, R. Youngs (1978) reported in Idriss (1978)

Cornell, Banon, and Shakal (1979)

Faccioli (1979)

Faccioli and Agalbato (1979)

Aptikaev and Kopnichev (1980)

Blume (1980)

Iwasaki, Kawashima, and Saeki (1980)

Matuschka (1980)

Ohsaki, Watabe, and Tohdo (1980)

TERA Corporation (1980)

Campbell (1981)

Chiaruttini and Siro (1981)

Goto, Kameda, and Sugito (1981)

Joyner and Boore (1981)

Bolt and Abrahamson (1982)

Joyner and Boore (1982b) & Joyner and Boore (1988)

PML (1982)

Schenk (1982)

Brillinger and Preisler (1984)

Campbell (1984) & K.W. Campbell (1988) reported in Joyner and Boore (1988)

Joyner and Fumal (1984), Joyner and Fumal (1985) & Joyner and Boore (1988)

Kawashima, Aizawa, and Takahashi (1984) & Kawashima, Aizawa, and Takahashi (1986)

McCann Jr. and Echezwia (1984)

Schenk (1984)

Xu, Shen, and Hong (1984)

Brillinger and Preisler (1985)

Kawashima, Aizawa, and Takahashi (1985)

Makropoulos and Burton (1985) & Makropoulos (1978)

K.-Z. Peng, Wu, and Song (1985)

K. Peng et al. (1985)

PML (1985)

McCue (1986)

C.B. Crouse (1987) reported in Joyner and Boore (1988)

Krinitzsky, Chang, and Nuttli (1987) & Krinitzsky, Chang, and Nuttli (1988)

Sabetta and Pugliese (1987)

K. Sadigh (1987) reported in Joyner and Boore (1988)

Singh et al. (1987)

Algermissen, Hansen, and Thenhaus (1988)

Annaka and Nozawa (1988)

Fukushima, Tanaka, and Kataoka (1988) & Fukushima and Tanaka (1990)

Gaull (1988)

McCue, Gibson, and Wesson (1988)

Petrovski and Marcellini (1988)

PML (1988)

Tong and Katayama (1988)

Yamabe and Kanai (1988)

Youngs, Day, and Stevens (1988)

Abrahamson and Litehiser (1989)

Campbell (1989)

Huo (1989)

Ordaz, Jara, and Singh (1989)

Alfaro, Kiremidjian, and White (1990)

Ambraseys (1990)

Campbell (1990)

Dahle, Bungum, and Kvamme (1990) & Dahle, Bugum, and Kvamme (1990)

Jacob et al. (1990)

Sen (1990)

Sigbjörnsson (1990)

Tsai, Brady, and Cluff (1990)

Ambraseys and Bommer (1991) & N. N. Ambraseys and Bommer (1992)

Crouse (1991)

Garcı̀a-Fernàndez and Canas (1991) & Garcia-Fernandez and Canas (1995)

Geomatrix Consultants (1991), Sadigh et al. (1993) & Sadigh et al. (1997)

Huo and Hu (1991)

I.M. Idriss (1991) reported in Idriss (1993)

Loh et al. (1991)

Matuschka and Davis (1991)

Niazi and Bozorgnia (1991)

Rogers et al. (1991)

Stamatovska and Petrovski (1991)

Abrahamson and Youngs (1992)

N. N. Ambraseys, Bommer, and Sarma (1992)

J. Huo and Hu (1992)

Kamiyama, O’Rourke, and Flores-Berrones (1992) & Kamiyama (1995)

Sigbjörnsson and Baldvinsson (1992)

Silva and Abrahamson (1992)

Taylor Castillo et al. (1992)

Tento, Franceschina, and Marcellini (1992)

Theodulidis and Papazachos (1992)

Abrahamson and Silva (1993)

Boore, Joyner, and Fumal (1993), Boore, Joyner, and Fumal (1997) & Boore (2005)

Campbell (1993)

Dowrick and Sritharan (1993)

Gitterman, Zaslavsky, and Shapira (1993)

McVerry et al. (1993) & McVerry, Dowrick, and Zhao (1995)

Midorikawa (1993a)

Quijada et al. (1993)

Singh et al. (1993)

Steinberg et al. (1993)

Sun and Peng (1993)

Ambraseys and Srbulov (1994)

Boore, Joyner, and Fumal (1994a) & Boore, Joyner, and Fumal (1997)

El Hassan (1994)

Fat-Helbary and Ohta (1994)

Fukushima, Gariel, and Tanaka (1994) & Fukushima, Gariel, and Tanaka (1995)

Lawson and Krawinkler (1994)

Lungu et al. (1994)

Musson, Marrow, and Winter (1994)

Radu et al. (1994), Lungu, Coman, and Moldoveanu (1995) & Lungu et al. (1996)

Ramazi and Schenk (1994)

Xiang and Gao (1994)

Aman, Singh, and Singh (1995)

N. N. Ambraseys (1995)

Dahle et al. (1995)

V. W. Lee, Trifunac, Todorovska, et al. (1995)

Lungu et al. (1995)

Molas and Yamazaki (1995)

Sarma and Free (1995)

N. N. Ambraseys, Simpson, and Bommer (1996) & Simpson (1996)

N. N. Ambraseys and Simpson (1996) & Simpson (1996)

Aydan, Sedaki, and Yarar (1996) & Aydan (2001)

Bommer et al. (1996)

Crouse and McGuire (1996)

Free (1996) & Free, Ambraseys, and Sarma (1998)

Inan et al. (1996)

Ohno et al. (1996)

Romeo, Tranfaglia, and Castenetto (1996)

Sarma and Srbulov (1996)

Singh, Aman, and Prasad (1996)

Spudich et al. (1996) & Spudich et al. (1997)

Stamatovska and Petrovski (1996)

Ansal (1997)

Campbell (1997), Campbell (2000), Campbell (2001) & Campbell and Bozorgnia (1994)

Ground-motion model (horizontal component) is: \[\begin{aligned} \ln A_H&=&a_1+a_2 M+a_3 \ln \sqrt{R_{\mathrm{SEIS}}^2+[a_4 \exp(a_5 M)]^2}\\ &&{}+[a_6+a_7\ln R_{\mathrm{SEIS}}+a_8M]F+[a_9+a_{10}\ln R_{\mathrm{SEIS}}]S_{\mathrm{SR}}\\ &&{}+[a_{11}+a_{12}\ln R_{\mathrm{SEIS}}]S_{\mathrm{HR}}+f_A(D)\\ f_A(D)&=&\left\{ \begin{array}{r@{\quad \mbox{for}\quad}l} 0&D \geq 1\,\mathrm{km}\\ \{[a_{11}+a_{12}\ln (R_{\mathrm{SEIS}})]-[a_9+a_{10} \ln (R_{\mathrm{SEIS}})]S_{\mathrm{SR}}\}(1-D)(1-S_{\mathrm{HR}})&D<1\,\mathrm{km}\\ \end{array} \right.\end{aligned}\] where \(A_H\) is in \(\,\mathrm{g}\), \(a_1=-3.512\), \(a_2=0.904\), \(a_3=-1.328\), \(a_4=0.149\), \(a_5=0.647\), \(a_6=1.125\), \(a_7=-0.112\), \(a_8=-0.0957\), \(a_9=0.440\), \(a_{10}=-0.171\), \(a_{11}=0.405\), \(a_{12}=-0.222\), \(\sigma=0.55\) for \(A_H<0.068\,\mathrm{g}\), \(\sigma=0.173-0.140\ln (A_H)\) for \(0.068\,\mathrm{g}\leq A_H \leq 0.21\,\mathrm{g}\) and \(\sigma=0.39\) for \(A_H>0.21\,\mathrm{g}\) (when expressed in terms of acceleration) and \(\sigma=0.889-0.0691M\) for \(M<7.4\) and \(\sigma=0.38\) for \(M \geq 7.4\) (when expressed in terms of magnitude).

Ground-motion model (vertical component) is: \[\begin{aligned} \ln A_V&=&\ln A_H + b_1+b_2 M + b_3 \ln [R_{\mathrm{SEIS}}+b_4 \exp (b_5 M)]\\ &&{}+b_6 \ln[R_{\mathrm{SEIS}}+b_7 \exp(b_8 M)]+b_9 F\end{aligned}\] where \(A_V\) is in \(\,\mathrm{g}\), \(b_1=-1.58\), \(b_2=-0.10\), \(b_3=-1.5\), \(b_4=0.079\), \(b_5=0.661\), \(b_6=1.89\), \(b_7=0.361\), \(b_8=0.576\), \(b_9=-0.11\) and \(\sigma_V=\sqrt{\sigma^2+0.36^2}\) (where \(\sigma\) is standard deviation for horizontal PGA prediction).

Uses three site categories:

A

Hard rock: primarily Cretaceous and older sedimentary deposits, metamorphic rock, crystalline rock and hard volcanic deposits (e.g. basalt).

Soft rock: primarily Tertiary sedimentary deposits and soft volcanic deposits (e.g. ash deposits).

Alluvium or firm soil: firm or stiff Quaternary deposits with depths greater than \(10\,\mathrm{m}\).

Also includes sediment depth (\(D\)) as a variable.

Restricts to near-source distances to minimize influence of regional differences in crustal attenuation and to avoid complex propagation effects that have been observed at longer distances.

Excludes recordings from basement of buildings greater than two storeys on soil and soft rock, greater than five storeys on hard rock, toe and base of dams and base of bridge columns. Excludes recordings from shallow and soft soil because previous analyses showed such sites have accelerations significantly higher than those on deep, firm alluvium. Include records from dam abutments because comprise a significant number of rock recordings and due to stiff foundations are expected to be only minimally affected by dam. Some of these could be strongly affected by local topography.

Includes earthquakes only if they had seismogenic rupture within shallow crust (depths less than about \(25\,\mathrm{km}\)). Includes several large, shallow subduction interface earthquakes because previous studies found similar near-source ground motions to shallow crustal earthquakes.

Includes only earthquakes with \(M\) about \(5\) or larger to emphasize those ground motions of greatest engineering interest and limit analysis to more reliable, well-studied earthquakes.

Notes that distance to seismogenic rupture is a better measure than distance to rupture or distance to surface projection because top layer of crust is non-seismogenic and will not contribute to ground motion. Give estimates for average depth to top of seismogenic rupture for hypothetical earthquakes.

Considers different focal mechanisms: reverse (H:6, V:5), thrust (H:9, V:6), reverse-oblique (H:4, V:2) and thrust-oblique (0), total (H:19, V:13) \(\Rightarrow F=1\) (H:278 records, V:116 records) (reverse have a dip angle greater than or equal to \(45^{\circ}\)), strike-slip (H:27, V:13) \(\Rightarrow F=0\) (H:367 records, V:109 records) (strike-slip have an absolute value of rake less than or equal to \(22.5^{\circ}\) from the horizontal as measured along fault plane). There is only one normal faulting earthquakes in set of records (contributing four horizontal records) so difference is not modelled although \(F=0.5\) given as first approximation (later revised to \(F=0\)).

Mostly W. USA with 20 records from Nicaragua(1) Mexico (5), Iran (8), Uzbekistan (1), Chile (3), Armenia (1) and Turkey (1).

Does regression firstly with all data. Selects distance threshold for each value of magnitude, style of faulting and local site condition such that the 16th percentile estimate of \(A_H\) was equal to \(0.02\,\mathrm{g}\) (which corresponds to a vertical trigger of about \(0.01\,\mathrm{g}\)). Repeats regression repeated only with those records within these distance thresholds. Avoids bias due to non-triggering instruments.

Finds dispersion (uncertainty) to be dependent on magnitude and PGA, models as linear functions. Finds better fit for PGA dependency.

Munson and Thurber (1997)

Pancha and Taber (1997)

Rhoades (1997)

Schmidt, Dahle, and Bungum (1997)

Youngs et al. (1997)

Ground-motion model for soil is: \[\begin{aligned} \ln \mathrm{PGA}&=&C_1^*+C_2 \mathbf{M} +C_3^* \ln \left[ r_{\mathrm{rup}}+\mathrm{e}^{C_4^*-\frac{C_2}{C_3^*} \mathbf{M}}\right] +C_5 Z_t+C_9H+C_{10}Z_{ss}\\ \mbox{with: }C_1^*&=&C_1+C_6Z_r\\ C_3^*&=&C_3+C_7Z_r\\ C_4^*&=&C_4+C_8Z_r\end{aligned}\] where \(\mathrm{PGA}\) is in \(\,\mathrm{g}\), \(C_1=-0.6687\), \(C_2=1.438\), \(C_3=-2.329\), \(C_4=\ln(1.097)\), \(C_5=0.3643\), \(C_9=0.00648\) and \(\sigma=1.45-0.1\mathbf{M}\) (other coefficients in equation not needed for prediction on deep soil and are not given in paper).

Ground-motion model for rock is: \[\begin{aligned} \ln \mathrm{PGA}&=&C_1^*+C_2 \mathbf{M} +C_3^* \ln \left[ r_{\mathrm{rup}}+\mathrm{e}^{C_4^*-\frac{C_2}{C_3^*}\mathbf{M}}\right] +C_5 Z_{ss}+C_8Z_t+C_9H\\ \mbox{with: }C_1^*&=&C_1+C_3C_4-C_3^*C_4^*\\ C_3^*&=&C_3+C_6Z_{ss}\\ C_4^*&=&C_4+C_7Z_{ss}\end{aligned}\] where \(\mathrm{PGA}\) is in \(\,\mathrm{g}\), \(C_1=0.2418\), \(C_2=1.414\), \(C_3=-2.552\), \(C_4=\ln(1.7818)\), \(C_8=0.3846\), \(C_9=0.00607\) and \(\sigma=1.45-0.1\mathbf{M}\) (other coefficients in equation not needed for prediction on rock and are not given in paper).

Use different models to force rock and soil accelerations to same level in near field.

Use three site categories to do regression but only report results for rock and deep soil:

A

Rock: Consists of at most about a metre of soil over weathered rock, 96 records.

Deep soil: Depth to bedrock is greater than \(20\,\mathrm{m}\), 284 records.

Shallow soil: Depth to bedrock is less than \(20\,\mathrm{m}\) and a significant velocity contrast may exist within \(30\,\mathrm{m}\) of surface, 96 records.

Use free-field recordings, i.e. instruments in basement or ground-floor of buildings less than four storeys in height. Data excluded if quality of time history poor or if portion of main shaking not recorded.

Consider tectonic type: interface (assumed to be thrust) (98 records) \(\Rightarrow Z_t=0\), intraslab (assumed to be normal) (66 records) \(\Rightarrow Z_t=1\)

Focal depths, \(H\), between \(10\) and \(229\,\mathrm{km}\)

Not enough data to perform individual regression on each subset so do joint regression analysis.

Both effect of depth and tectonic type significant.

Large differences between rock and deep soil.

Note differences between shallow crustal and interface earthquake primarily for very large earthquakes.

Assume uncertainty to be linear function of magnitude.

Zhao, Dowrick, and McVerry (1997)

Baag et al. (1998)

Bouhadad et al. (1998)

Costa, Suhadolc, and Panza (1998)

Manic (1998)

Reyes (1998)

Rinaldis et al. (1998)

Sadigh and Egan (1998)

Sarma and Srbulov (1998)

Sharma (1998)

Smit (1998)

N. P. Theodulidis (1998)

Theodulidis et al. (1998)

Cabañas et al. (1999), Cabañas et al. (2000), Benito et al. (2000) & Benito and Gaspar-Escribano (2007)

Chapman (1999)

Cousins, Zhao, and Perrin (1999)

Gallego and Ordaz (1999) & Gallego (2000)

Ólafsson and Sigbjörnsson (1999)

Si and Midorikawa (1999, 2000)

Spudich et al. (1999) & Spudich and Boore (2005)

Wang, Wu, and Bian (1999)

Zaré, Ghafory-Ashtiany, and Bard (1999)

N. Ambraseys and Douglas (2000), Douglas (2001b) & Ambraseys and Douglas (2003)

Bozorgnia, Campbell, and Niazi (2000)

Campbell and Bozorgnia (2000)

Field (2000)

Jain et al. (2000)

Kobayashi et al. (2000)

Monguilner, Ponti, and Pavoni (2000)

Paciello, Rinaldis, and Romeo (2000)

Sharma (2000)

P. Smit et al. (2000)

Takahashi et al. (2000)

G. Wang and Tao (2000)

S. Y. Wang and others (2000)

Chang, Cotton, and Angelier (2001)

Herak, Markus̆ić, and Ivančić (2001)

Lussou et al. (2001)

Sanchez and Jara (2001)

Wu, Shin, and Chang (2001)

Y.-H. Chen and Tsai (2002)

N. Gregor, Silva, and Darragh (2002)

Gülkan and Kalkan (2002)

Iglesias et al. (2002)

Khademi (2002)

Margaris et al. (2002a) & Margaris et al. (2002b)

Saini, Sharma, and Mukhopadhyay (2002)

Schwarz et al. (2002)

Stamatovska (2002)

Tromans and Bommer (2002)

Zonno and Montaldo (2002)

Alarcón (2003)

Alchalbi, Costa, and Suhadolc (2003)

Atkinson and Boore (2003)

Boatwright et al. (2003)

Bommer, Douglas, and Strasser (2003)

Campbell and Bozorgnia (2003d, 2003a, 2003b, 2003c) & Bozorgnia and Campbell (2004b)

Halldórsson and Sveinsson (2003)

Li and others (2003)

Nishimura and Horike (2003)

Shi and Shen (2003)

Sigbjörnsson and Ambraseys (2003)

Skarlatoudis et al. (2003)

Ulutaş and Özer (2003)

Zhao and others (2003)

Beauducel, Bazin, and Bengoubou-Valerius (2004)

Beyaz (2004)

Bragato (2004)

Cantavella et al. (2004)

Gupta and Gupta (2004)

Iyengar and Ghosh (2004)

Kalkan and Gülkan (2004a)

Kalkan and Gülkan (2004b) and Kalkan and Gülkan (2005)

Lubkowski et al. (2004)

Marin et al. (2004)

Midorikawa and Ohtake (2004)

Özbey et al. (2004)

Pankow and Pechmann (2004) and Pankow and Pechmann (2006)

Skarlatoudis et al. (2004)

Sunuwar, Cuadra, and Karkee (2004)

Ulusay et al. (2004)

Y.-X. Yu and Wang (2004)

Adnan et al. (2005)

N. N. Ambraseys et al. (2005a)

N. N. Ambraseys et al. (2005b)

Bragato (2005)

Bragato and Slejko (2005)

Frisenda et al. (2005)

Garcı́a et al. (2005)

Liu and Tsai (2005)

McGarr and Fletcher (2005)

Nath, Vyas, Pal, and Sengupta (2005)

Nowroozi (2005)

Ruiz and Saragoni (2005) & Saragoni, Astroza, and Ruiz (2004)

Takahashi et al. (2005), Zhao et al. (2006) and Fukushima et al. (2006)

Wald et al. (2005)

G. M. Atkinson (2006)

Beyer and Bommer (2006)

Bindi et al. (2006)

Campbell and Bozorgnia (2006a) and Campbell and Bozorgnia (2006b)

Costa et al. (2006)

Gómez-Soberón, Tena-Colunga, and Ordaz (2006)

Hernandez et al. (2006)

Jaimes, Reinoso, and Ordaz (2006)

Jean et al. (2006)

Kanno et al. (2006)

Kataoka et al. (2006)

Laouami et al. (2006)

Luzi et al. (2006)

Mahdavian (2006)

McVerry et al. (2006)

Moss and Der Kiureghian (2006)

Pousse et al. (2006)

Souriau (2006)

Tapia (2006) & Tapia, Susagna, and Goula (2007)

Tsai, Chen, and Liu (2006)

Zare and Sabzali (2006)

Akkar and Bommer (2007a)

Amiri, Mahdavian, and Dana (2007a) & Amiri, Mahdavian, and Dana (2007b)

Aydan (2007)

Bindi et al. (2007)

Bommer et al. (2007)

Boore and Atkinson (2007) & Boore and Atkinson (2008)

Campbell and Bozorgnia (2007), Campbell and Bozorgnia (2008b) & Campbell and Bozorgnia (2008a)

Danciu and Tselentis (2007a), Danciu and Tselentis (2007b) & Danciu (2006)

Douglas (2007)

S. Fukushima, Hayashi, and Yashiro (2007)

Graizer and Kalkan (2007, 2008)

Güllü and Erçelebi (2007)

Hong and Goda (2007) & Goda and Hong (2008)

Massa et al. (2007)

Popescu et al. (2007)

Sobhaninejad, Noorzad, and Ansari (2007)

Tavakoli and Pezeshk (2007)

Tejeda-Jácome and Chávez-Garcı́a (2007)

Abrahamson and Silva (2008) & Abrahamson and Silva (2009)

Ágústsson, orbjarnardóttir, and Vogfjör (2008)

Aghabarati and Tehranizadeh (2008)

Al-Qaryouti (2008)

C. Cauzzi and Faccioli (2008), C. V. Cauzzi (2008) & C. Cauzzi, Faccioli, Paolucci, et al. (2008)

L. Chen (2008)

B. S.-J. Chiou and Youngs (2008)

Cotton et al. (2008)

Güllü, Ansal, and Özbay (2008)

Humbert and Viallet (2008)

Idriss (2008)

Lin and Lee (2008)

Massa et al. (2008)

Mezcua, Garcı́a Blanco, and Rueda (2008)

Morasca et al. (2008)

Slejko et al. (2008)

Srinivasan et al. (2008)

Adnan and Suhatril (2009)

Aghabarati and Tehranizadeh (2009)

Akyol and Karagöz (2009)

Baruah et al. (2009)

Bindi, Luzi, and Pacor (2009)

Bindi, Luzi, et al. (2009)

Bragato (2009)

Cabalar and Cevik (2009)

Garcı̀a Blanco (2009)

Goda and Atkinson (2009)

H. P. Hong, Pozos-Estrada, and Gomez (2009)

H. P. Hong, Zhang, and Goda (2009)

Kuehn, Scherbaum, and Riggelsen (2009)

Li, Li, and Li (2009)

Mandal et al. (2009)

Moss (2009) & Moss (2011)

Pétursson and Vogfjörd (2009)

Rupakhety and Sigbjörnsson (2009)

Akkar and Bommer (2010)

Akkar and Çağnan (2010) & Çağnan, Akkar, and Gülkan (2011)

Arroyo et al. (2010)

Bindi et al. (2010)

Cua and Heaton (2010)

Douglas and Halldórsson (2010)

Faccioli, Bianchini, and Villani (2010)

Graizer, Kalkan, and Lin (2010) & Graizer, Kalkan, and Lin (2013)

Hong and Goda (2010)

Iervolino et al. (2010)

Jayaram and Baker (2010)

Montalva (2010) & Rodriguez-Marek et al. (2011)

Ornthammarath et al. (2010), Ornthammarath (2010) & Ornthammarath et al. (2011)

Sokolov et al. (2010)

Ulutaş and Özer (2010)

Alavi et al. (2011)

Anderson and Uchiyama (2011)

Arroyo and Ordaz (2011)

Beauducel et al. (2011)

Bindi, Pacor, et al. (2011)

Emolo, Convertito, and Cantore (2011)

Gehl, Bonilla, and Douglas (2011)

Joshi, Kumar, and Sinvhal (2011) & Joshi et al. (2012)

Kayabali and Beyaz (2011)

P.-S. Lin, Lee, et al. (2011)

Luzi et al. (2011)

Yilmaz (2011)

Yuen and Mu (2011)

Chang, Jean, and Loh (2012)

Contreras and Boroschek (2012)

Ground-motion model is: \[\begin{aligned} \log_{10}(Y)&=&C_1+C_2 M_w+C_3 H+C_4 R-g\log_{10}(R)+C_5 Z\\ R&=&\sqrt{R_{rup}^2+(C_6 10^{C_7 M_w})^2}\\ g&=&C_8+C_9 M_w\end{aligned}\] where \(Y\) is in \(\,\mathrm{g}\), \(C_1=-1.8559\), \(C_2=0.2549\), \(C_3=0.0111\), \(C_4=-0.0013\), \(C_5=0.3061\), \(C_6=0.0734\), \(C_7=0.3552\), \(C_8=1.5149\), \(C_9=-0.103\) and \(\sigma=0.2137\).

Use two site classes because of limited number of records:

enumerate

\(V_{s,30}\geq 900\,\mathrm{m/s}\), Rock Quality Designation \(\geq 50\%\) or compressive strength \(q_u \geq 10\,\mathrm{MPa}\). 25 records. \(Z=0\)

Otherwise. 92 records. \(Z=1\) following the Chilean seismic code.

Focal depths (\(H\)) from \(18\) to \(53\,\mathrm{km}\).

Use data from 1985 to 2010 obtained from public databases and records from National Accelerograph Network.

Most records from SMA-1s or similar analogue instruments.

Most instruments on ground floor of 1-storey buildings (79 different stations).

Only use data from large interface earthquakes (9 mainshocks and 4 aftershocks). 8 events in north (including two in Peru) and 5 in central area of Chile.

Locations from Chilean Seismological Service and magnitudes from Global CMT.

Data well-distributed w.r.t. \(M_w\) and \(r_{rup}\).

Two events: 3/3/1985 and 27/2/2010 contribute 27 and 31 records, respectively; about half the data.

Estimate \(r_{rup}\) using CMT solutions and aftershock distributions assuming that rupture area generally smaller than aftershock area.

Filter (using acausal 4th-order Butterworth) based on visual inspection of Fourier amplitude spectra in log-log space. Generally use \(f_{max}\) of \(90\,\mathrm{Hz}\) for Nyquist of \(100\,\mathrm{Hz}\) and \(40\,\mathrm{Hz}\) for Nyquist of \(50\,\mathrm{Hz}\). Use iterative process to find \(f_{min}\) based on examination of displacements and displacement response spectra. Seek lowest \(f_{min}\) that preserves natural appearance in time domain and without obvious drift.

Coefficients \(C_6\), \(C_7\), \(C_8\) and \(C_9\) derived using algorithm to minimize mean residual for PGA from \(r_{rup}\leq 80\,\mathrm{km}\) (47 records). Fix these coefficients for other periods.

Compare predictions and observations for \(8.3 \leq M_w \leq 9.3\) and find good fit.

Plot total residuals w.r.t. distance and find no trends.

Convertito et al. (2012)

Cui et al. (2012)

Di Alessandro et al. (2012)

Gómez-Bernal, Lecea, and Juárez-Garcı́a (2012)

Hamzehloo and Mahood (2012)

Hung and Kiyomiya (2012)

Laouami and Slimani (2012)

Mohammadnejad et al. (2012)

Nabilah and Balendra (2012)

Nguyen et al. (2012)

Saffari et al. (2012)

Shah et al. (2012)

Abrahamson, Silva, and Kamai (2013, 2014)

Boore et al. (2013, 2014)

Campbell and Bozorgnia (2013, 2014)

Chiou and Youngs (2013, 2014)

Douglas et al. (2013)

Edwards and Douglas (2013)

Idriss (2013, 2014)

Joshi, Kumar, Castanos, et al. (2013)

Laurendeau et al. (2013)

Morikawa and Fujiwara (2013)

Pacific Earthquake Engineering Research Center (2013)

Segou and Voulgaris (2013)

Sharma et al. (2013)

Skarlatoudis et al. (2013)

Villalobos-Escobar and Castro (2013)

Akkar, Sandıkkaya, and Bommer (2014a, 2014b)

Ansary (2014)

Bindi, Massa, et al. (2014b, 2014a)

Derras, Cotton, and Bard (2014)

Ghofrani and Atkinson (2014)

Gianniotis, Kuehn, and Scherbaum (2014)

Kurzon et al. (2014)

Luzi et al. (2014)

Rodrı́guez-Pérez (2014)

Vacareanu et al. (2014)

Atkinson (2015)

Breska, Perus, and Stankovski (2015)

C. Cauzzi, Faccioli, Vanini, et al. (2015) & C. Cauzzi and Faccioli (2018a, 2018b)

Emolo et al. (2015)

Graizer and Kalkan (2015) & Graizer and Kalkan (2016)

Haendel et al. (2015)

Jaimes, Ramirez-Gaytán, and Reinoso (2015)

Kale et al. (2015)

Kuehn and Scherbaum (2015)

Pacific Earthquake Engineering Research Center (2015) — Al Noman and Cramer

Pacific Earthquake Engineering Research Center (2015) — Graizer & Graizer (2016)

Vacareanu, Radulian, et al. (2015)

Vuorinen, Tiira, and Lund (2015)

Wan Ahmad et al. (2015)

Zhao et al. (2015)

Abrahamson, Gregor, and Addo (2016) & BC Hydro (2012)

Bozorgnia and Campbell (2016b)

Kaveh, Bakhshpoori, and Hamzeh-Ziabari (2016)

S. R. Kotha, Bindi, and Cotton (2016a, 2016b)

Kuehn and Scherbaum (2016)

Landwehr et al. (2016)

Lanzano et al. (2016)

Mu and Yuen (2016)

Noor et al. (2016) & Nazir et al. (2016)

Sedaghati and Pezeshk (2016)

Shoushtari, Adnan, and Zare (2016)

Stewart et al. (2016)

Sung and Lee (2016)

Tusa and Langer (2016)

Wang et al. (2016)

J. X. Zhao, Jiang, et al. (2016)

J. X. Zhao, Liang, et al. (2016)

J. X. Zhao, Zhou, et al. (2016)

Ameri et al. (2017)

Baltay, Hanks, and Abrahamson (2017)

Bindi et al. (2017)

Çağnan et al. (2017a, 2017b)

Derras, Bard, and Cotton (2017)

Garcı́a-Soto and Jaimes (2017)

Gülerce et al. (2017)

Idini et al. (2017)

Institute of Seismology at the University of Helsinki (2017) cited by Ader et al. (2019)

Kumar et al. (2017)

Liew et al. (2017)

G. A. Montalva, Bastı́as, and Rodriguez-Marek (2017b, 2017a, 2017c)

Oth, Miyake, and Bindi (2017)

Peruzza et al. (2017)

Sedaghati and Pezeshk (2017)

Shahidzadeh and Yazdani (2017)

Soghrat and Ziyaeifar (2017)

Zuccolo, Bozzoni, and Lai (2017)

Ameur, Derras, and Zendagui (2018)

Bajaj and Anbazhagan (2018)

Chousianitis et al. (2018)

M. D’Amico et al. (2018)

Erken, Nomaler, and Gündüz (2018)

Felicetta et al. (2018)

Javan-Emrooz, Eskandari-Ghadi, and Mirzaei (2018)

Ktenidou et al. (2018)

Laouami, Slimani, and Larbes (2018b, 2018a)

Mahani and Kao (2018)

Rahpeyma et al. (2018)

Sahakian et al. (2018)

Sharma and Convertito (2018)

Shoushtari, Adnan, and Zare (2018)

Wen et al. (2018)

Zafarani et al. (2018)

Darzi et al. (2019)

Farajpour, Pezeshk, and Zare (2019)

Huang and Galasso (2019)

Konovalov et al. (2019)

Lanzano, Luzi, Pacor, Felicetta, et al. (2019; Lanzano, Luzi, Pacor, Puglia, et al. 2019)

Laouami (2019)

Podili and Raghukanth (2019)

Stafford (2019)

Sung and Lee (2019)

Zolfaghari and Darzi (2019b)

Chao et al. (2020)

Cremen, Werner, and Baptie (2020)

Hu, Tan, and Zhao (2020)

Jaimes and Garcı́a-Soto (2020)

Kotha et al. (2020)

Kowsari et al. (2020)

Kuehn et al. (2020)

Lanzano and Luzi (2020)

Li et al. (2020)

Phung, Loh, Chao, and Abrahamson (2020)

Phung, Loh, Chao, Chiou, et al. (2020)

Ramkrishnan, Sreevalsa, and Sitharam (2020)

Tusa, Langer, and Azzaro (2020)

Abdelfattah et al. (2021)

Boore et al. (2021)

Gao, Chan, and Lee (2021)

Kumar et al. (2021)

Ramkrishnan, Sreevalsa, and Sitharam (2021)

General characteristics of GMPEs for PGA

Table [tab:pga] gives the general characteristics of published attenuation relations for peak ground acceleration. The columns are:

  1. Number of horizontal records (if both horizontal components are used then multiply by two to get total number)

  2. Number of vertical components

  3. Number of earthquakes

  4. Magnitude of smallest earthquake

  5. Magnitude of largest earthquake

  6. Magnitude scale (scales in brackets refer to those scales which the main \(M\) values were sometimes converted from, or used without conversion, when no data existed), where:

    1. Intermediate spectral magnitude (S.-Z. Chen and Atkinson 2002)

    2. Body-wave magnitude

    3. Chinese surface wave magnitude

    4. Coda length magnitude

    5. Duration magnitude

    6. Japanese Meteorological Agency magnitude

    7. Local magnitude

    8. Local moment magnitude reported by the Icelandic Meterological Office

    9. Magnitude calculated using Lg amplitudes on short-period vertical seismographs

    10. Surface-wave magnitude

    11. Moment magnitude

  7. Shortest source-to-site distance

  8. Longest source-to-site distance

  9. Distance metric, where (when available the de facto standard abbreviations of Abrahamson and Shedlock (1997) are used):

    1. Distance to rupture centroid

    2. Epicentral distance

    3. Distance to energy centre

    4. Distance to projection of rupture plane on surface (Joyner and Boore 1981)

    5. Hypocentral (or focal) distance

    6. Equivalent hypocentral distance (EHD) (Ohno et al. 1993)

    7. Distance to rupture plane

    8. Distance to seismogenic rupture plane (assumes near-surface rupture in sediments is non-seismogenic) (Campbell 1997)

  10. Number of different site conditions modelled, where:

    1. Continuous classification

    2. Individual classification for each site

  11. Use of the two horizontal components of each accelerogram [see Beyer and Bommer (2006)], where:

    1. Principal 1

    2. Principal 2

    3. Arithmetic mean

    4. Both components

    5. Randomly chosen component

    6. \(\mathrm{GMrotD50}\) (Boore, Watson-Lamprey, and Abrahamson 2006).

    7. East-west direction.

    8. Geometric mean

    9. \(\mathrm{GMrotI50}\) (Boore, Watson-Lamprey, and Abrahamson 2006).

    10. Larger component

    11. Largest of all 3 components (including vertical)

    12. Mean (not stated what type)

    13. Fault normal

    14. Randomly oriented component

    15. Fault parallel

    16. Quadratic mean, \(\sqrt{(a_1^2+a_2^2)/2}\), where \(a_1\) and \(a_2\) are the two components (Hong and Goda 2007)

    17. Resolved component

    18. \(\sqrt{(a_1+a_2)/2}\), where \(a_1\) and \(a_2\) are the two components (Reyes 1998)

    19. Unknown

    20. Vectorially-resolved component, i.e. square root of sum of squares of the two components

    21. Vectorially-resolved component including vertical, i.e. square root of sum of squares of the three components

  12. Regression method used, where:

    1. Ordinary one-stage

    2. Bayesian one-stage (Ordaz, Singh, and Arciniega 1994)

    3. Maximum likelihood one-stage or random-effects (Abrahamson and Youngs 1992; Joyner and Boore 1993)

    4. Weighted one-stage

    5. Weighted maximum-likelihood one-stage

    6. Two-stage (Joyner and Boore 1981)

    7. Maximum likelihood two-stage (Joyner and Boore 1993)

    8. Two-stage with second staged weighted as described in Joyner and Boore (1988)

    9. Other (see section referring to study)

    10. Unknown (often probably ordinary one-stage regression)

  13. Source mechanisms (and tectonic type) of earthquakes (letters in brackets refer to those mechanism that are separately modelled), where:

    1. All (this is assumed if no information is given in the reference)

    2. Aftershock

    3. Interslab

    4. Shallow crustal

    5. Gas extraction

    6. Interface

    7. Geothermal-related

    8. Hanging wall

    9. Intraplate

    10. Mining-induced

    11. Normal

    12. Oblique or odd (Frohlich and Apperson 1992)

    13. Reverse

    14. Strike-slip

    15. Thrust

    16. Unspecified

    17. Upper mantle

    18. Volcanic

    19. Wastewater disposal

‘+’ refers to extra records from outside region used to supplement data. (…) refer either to magnitudes of supplementing records or to those used for part of analysis. * means information is approximate because either read from graph or found in another way.

continued
Reference Area H V E \(M_{\mathrm{min}}\) \(M_{\mathrm{max}}\) \(M\) scale \(r_{\mathrm{min}}\) \(r_{\mathrm{max}}\) \(r\) scale S C R M
Reference Area H V E \(M_{\mathrm{min}}\) \(M_{\mathrm{max}}\) \(M\) scale \(r_{\mathrm{min}}\) \(r_{\mathrm{max}}\) \(r\) scale S C R M
Esteva and Rosenblueth (1964) W. USA 46* - U U U U 15* 450* \(r_{hypo}\) 1 U U A
Kanai (1966) California & Japan U - U U U U U U \(r_{rup}\) C U U A
Milne and Davenport (1969) W. USA U - U U U U U U \(r_{epi}\) 1 U U A
Esteva (1970) W. USA U - U U U U 15* 500* \(r_{hypo}\) 1 U U A
Denham and Small (1971) Yonki, New Guinea 8 - 8 U U \(M_L\)66 U U \(r_{hypo}\) 1 U U A
Davenport (1972) Unknown U - U U U U U U \(r_{hypo}\) 1 U U A
Denham, Small, and Everingham (1973) Papua New Guinea 25 - 25 5.2 8.0 \(M_L\) 80* 300 U 1 U 1 A
Donovan (1973) Mostly W. USA but 100+ foreign 678 - U \(<\)5 \(>\)8 U 3* 450* \(r_{hypo}\) 1 U U A
Esteva and Villaverde (1973) & Esteva (1974) W. USA U - U U U U 15* 150* \(r_{hypo}\) 1 B U A
Katayama (1974) Japan 330 - 46 5.1 7.8 U67 U U \(r_{hypo}\) 1 A 1 A
McGuire (1974) & McGuire (1977) W. USA 34 - 22 5.3 7.6 \(M_L\) 14 125 \(r_{hypo}\) 1 B U A
Orphal and Lahoud (1974) California 140 - 31 4.1 7.0 \(M_L\) 15 350 \(r_{hypo}\) 1 U O A
Ahorner and Rosenhauer (1975) Worldwide U - U U U U U U U U U U A
N. N. Ambraseys (1975), N. Ambraseys (1975) & N. N. Ambraseys (1978a) Europe 58 - U68 3.5 5.0 \(M_L\) 5 35 \(r_{hypo}\) 1 U69 U A
Shah and Movassate (1975) Worldwide U - U U U U U U U U U U A
Trifunac and Brady (1975a),Trifunac (1976a) & Trifunac and Brady (1976) W. USA 181 181 57 3.8 7.7 Mostly \(M_L\) 670* 40071* \(r_{epi}\) 3 B O A
Blume (1977) California & W. Nevada 79572 - U U U \(M_L\) U U \(r_{hypo}\) 2 (1) B U A
Gürpinar (1977) California 64, 34, 13 - U U U \(M_L\) 28* 70* \(r_{hypo}\) 3 B 1 A
Milne (1977) W. USA 200* - U 3.5 7.7 U 1 380 \(r_{hypo}\) 1 U U A
Saeki, Katayama, and Iwasaki (1977) Japan 298 - U U U U73 U U \(r_{epi}\) 4 U 1 A
N. N. Ambraseys (1978b) Europe & Middle East 162 - U 3.0* 6.6 \(m_b\) 0* 30* \(r_{hypo}\) 1 L O A
Donovan and Bornstein (1978) W. USA 59 - 10 5.0 7.7 U74 0.1 321 \(r_E\), \(r_{rup}\) and \(r_{hypo}\) 1 B O A
Faccioli (1978) Mostly W. USA & Japan, some foreign 4775 - 23 4.9 7.8 U76 15 342 \(r_{hypo}\) 1 B U A
Goto et al. (1978) Japan 45 - U U U U77 U U \(r_{epi}\) 1 U 1 A
R. K. McGuire (1978b) W. USA 70 - 17+* 4.5* 7.7 U78 11* 210* \(r_{hypo}\) 2 B U A
A. Patwardhan et al. (1978)79 Worldwide 63 (32) - 25 (23) 4 (5.3) 7.7 (7.8) \(M_s\) U U \(r_{rup}\) 2 B U A
Cornell, Banon, and Shakal (1979) W. USA 70 - U U U \(M_L\) U U \(r_{hypo}\) 1 C U A
Faccioli (1979) Friuli, Italy 1980 - 5* 3.7 6.3 \(M_L\) 10* 30* \(r_{hypo}\) 1 B 1 A
Faccioli and Agalbato (1979) Friuli, Italy 66 52 14 3.7 6.3 \(M_L\) 5 (\(r_{epi}\)) 190 (\(r_{epi}\)) \(r_{hypo}\) 2 B 1 A
Aptikaev and Kopnichev (1980) Worldwide Many 100s - (70*) U (59) U U U U U \(r_{hypo}\) 1 U U A (T, TS, S, SN, N)81
Blume (1980) W. USA 816 - U 2.1 7.6 U 0 449 \(r_{hypo}\) 1 B 1, O A
Iwasaki, Kawashima, and Saeki (1980) Japan 301 - 51 \(>\)5.0 \(<\)7.9 \(M_L\)82 \(<\)20 \(>\)200 \(r_{epi}\) 4 U 1 A
Matuschka (1980) New Zealand 61 - U 4.5* U U U 120 \(d_{hypo}\) U U 1 A
Ohsaki, Watabe, and Tohdo (1980) Japan 75 75 U 4 7.4 U 6 500 \(r_{hypo}\) 1 U 1 A
TERA Corporation (1980) W. USA+7 foreign 96 - 22 4.0 7.7 \(M_s\) (\(M_L\)) 0.08 47.00 \(r_{rup}\) 1 B O A
Campbell (1981) W. USA+8 foreign 116 - 27 5.0 7.7 \(M_L\) for \(M<6.0\) and \(M_s\) otherwise 0.08 47.7 \(r_{rup}\) 1 M O A
Chiaruttini and Siro (1981) Europe & Mid. East 224 - 117 2.7 7.8 \(M_L\) (\(m_b\)) 3 480 \(r_{hypo}\) 1 L 1 A
Goto, Kameda, and Sugito (1981) Japan 84 - 28 4.3* 7.8* U83 11* 300* \(r_{epi}\) 1, C L 1 A
Joyner and Boore (1981) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L 2 A
Bolt and Abrahamson (1982) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 1 L O A
Joyner and Boore (1982b) & Joyner and Boore (1988) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L 2 A
PML (1982) Europe + USA + others 113 - 32 4.3 8 \(M_s\) 0.1 330 \(r_{hypo}\) or \(r_{rup}\) 1 U U A
Schenk (1982) Unknown 3500 - U 2.5 6.5 \(M_s\) 2 600 \(r_{hypo}\) 1 U O A
Brillinger and Preisler (1984) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L 1M A
Campbell (1984) & K.W. Campbell (1988)84 Worldwide U - U \(\geq\) 5 U \(M_L\) for \(M<6.0\) and \(M_s\) otherwise U \(<\)50 \(r_{seis}\) 2 M U A (S, R)
Joyner and Fumal (1984) and Joyner and Fumal (1985) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) C L 2 A
Kawashima, Aizawa, and Takahashi (1984) & Kawashima, Aizawa, and Takahashi (1986) Japan 197 - 90 5.0 7.9 \(M_{\mathrm{JMA}}\) 5* 550* \(r_{epi}\) 3 R 1 A
McCann Jr. and Echezwia (1984) N. America + foreign 83 - 18 \(5.0+\) U \(M_w\) U U \(r_{rup}\) 1 U O A
Schenk (1984) Unknown 3500 - U 2.5 6.5 U 2 600 \(r_{hypo}\) 1 U O A
Xu, Shen, and Hong (1984) N. China 19 - 10 4.5 7.8 \(M_w\) (\(M_L\) for \(M<6.0\), \(M_s\) for \(M\geq 6.0\)) 10.1 157 \(r_{epi}\) 1 L 1 A
Brillinger and Preisler (1985) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L 1M A
Kawashima, Aizawa, and Takahashi (1985) Japan - 119 90* 5.0* 7.5* \(M_{\mathrm{JMA}}\) 5* 500* \(r_{epi}\) 3 - 1 A
Makropoulos and Burton (1985) & Makropoulos (1978) Worldwide U - U U U U U U U U U U A
K.-Z. Peng, Wu, and Song (1985) N.E. China 73 - 20 3.7 7.8 \(M_C\) 2 442.5 \(r_{epi}\) 1 U 1 A
K. Peng et al. (1985) Tangshan region, China 93 87 19 2.9 5.3 \(M_L\) 2* 50* \(r_{epi}\) 1 L 2 A
PML (1985) USA + Europe + others 203 - 46 3.1 6.9 \(M_s\) 0.1 40 \(r_{rup}\) 1 U U A (S, T)
McCue (1986) E. Australia U - U 1.7 5.4 \(M_L\) 2.5 134 \(r_{hypo}\) 1 U U A
C.B. Crouse (1987)85 S. California U - U U U \(M_s\) U U \(r_{rup}\) 1 B U A
Krinitzsky, Chang, and Nuttli (1987) & Krinitzsky, Chang, and Nuttli (1988) Plate boundaries86 38987 - U 5.0* 7.4*88 \(M\)89 7*90 200*91 \(r_{hypo}\)92 2 B O A
Sabetta and Pugliese (1987) Italy 95 - 17 4.6 6.8 \(M_s\) for \(M \geq 5.5\), \(M_L\) otherwise 1.5, 1.5 179, 180 Both \(r_{jb}\) & \(r_{epi}\) 2 L 1 A
K. Sadigh (1987)93 W. USA + others U - U U U \(M_w\) U U \(r_{rup}\) 2 B U A (S, R)
Singh et al. (1987) Mexico 16 - 16 5.6 8.1 \(M_s\) 282 466 \(r_{rup}\) 1 U 1 A
Algermissen, Hansen, and Thenhaus (1988) Vicinity of San Salvador 82 - U U U \(M_s\) U U \(r_{hypo}\) 1 M U A
Annaka and Nozawa (1988) Japan U - 45 U U U U U U 1 U 1 A
Fukushima, Tanaka, and Kataoka (1988) & Fukushima and Tanaka (1990) Japan+200 W. USA 486+200 - 28+15 4.6(5.0) 8.2(7.7) \(M_s\) (\(M_{\mathrm{JMA}}\)) 16 (0.1) 303 (48) \(r_{hypo}\), \(r_{rup}\) for 2 Japanese & all US 4 G 2 A
Gaull (1988) S.W. W. Australia 25+ - 12+ 2.6 6.9 \(M_L\) 2.5 175 \(r_{hypo}\) 1 U O A
Joyner and Boore (1988) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L, O 2W A
McCue, Gibson, and Wesson (1988) S.E. Australia 62 - U 0.5* 6* \(M_L\) 5* 833 \(r_{epi}\) 1 U O A
Petrovski and Marcellini (1988) Europe 120 120 46 3 7 U 8 200 \(r_{hypo}\) 1 L 1 A
PML (1988)94 USA + Europe + others 162 124 30* 3.0* \(\geq\) 7.0 \(M_s\) 10* \(\geq\) 150 \(r_{hypo}\) 3 L, V 1 A
Tong and Katayama (1988) Kanto (Japan) \(<\)227 - \(<\)27 4.5* 7.9* U 10* 750* \(r_{epi}\) C L O A
Yamabe and Kanai (1988) Japan U - 22 5.3 7.9 U U U \(r_{hypo}\) 1 U O A
Youngs, Day, and Stevens (1988) Worldwide subduction zones 197+389 - 60 5 8.1 (8.2)95 \(M_w\) (\(M_s\), \(m_b\)) 15* (20*) 450* (450*) \(r_{rup}\), \(r_{hypo}\) for \(M_w\lesssim 7.5\) 1 G 1W A (B,F)
Abrahamson and Litehiser (1989) \(75\%+\) California, rest foreign 585 585 76 5.0 8.1 \(M_s\) for \(M_s\geq6.0\), \(M_L\) (\(m_b\)) otherwise 0.08 400 \(r_{rup}\) 1 L O A (R & RO, I)
Campbell (1989) W. N. America + 3 from Managua 190 - 91 2.9 5.0 \(M_L\) 0.6 18.3 \(r_{epi}\) 1 M O A
Huo (1989) W. USA & S. China U - U U U U U U U 1 G 1 A
Ordaz, Jara, and Singh (1989) Guerrero, Mexico U - U U U U U U U U U U A
Alfaro, Kiremidjian, and White (1990) Guatemala, Nicaragua & El Salvador 20 - 12 4.1 7.5 \(M_s\) 1 27 \(r_{epi}\) 1 L U A
Ambraseys (1990) W. N. America 182 - 23 5.03 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L 2 A
Campbell (1990) Unknown U - U U U \(M_L\) for \(M<6\), \(M_s\) for \(M\geq 6\) U U \(r_{seis}\) 1 U U A
Dahle, Bungum, and Kvamme (1990) & Dahle, Bugum, and Kvamme (1990) Worldwide intraplate regions 87 - 56 2.9 7.8 \(M_s\) (\(M_L\), \(m_b\), \(M_{CL}\)) 6 1300 \(r_{hypo}\) 1 L 2 A
Jacob et al. (1990) E. N. America U - 8 1.8 6.4 \(m_b\) \(\leq 20\) 820 U96 1 U O A
Sen (1990) Whittier Narrows area 72* - 11 2.2 3.5 \(M_L\) 12* 21* \(r_{hypo}\) 1 U 1M A (T)
Sigbjörnsson (1990) Iceland U - U U 5.897 U U U \(r_{jb}\) 1 U U A
Tsai, Brady, and Cluff (1990) Worldwide \(<\)217 - \(<\)51 4.9* 7.4 \(M_w\) 3* 150* \(r_{rup}\) 1 M U T (S,O)
Ambraseys and Bommer (1991) & N. N. Ambraseys and Bommer (1992) Europe & Mid. East 529 459 H:219, V:191 4 7.34 \(M_s\) 1 H:313, V:214 \(r_{jb}\) for \(M_s\gtrsim6.0\), \(r_{epi}\) otherwise 1 L 1, 2 A
Crouse (1991) Worldwide subduction zones 69798 - U 4.8 8.2 \(M_w\) (\(M_s\), \(M_{\mathrm{JMA}}\)) \(>\)8 \(>\)866 \(r_E\), \(r_{hypo}\) for \(M<7.5\) 1 B 1 A
Garcı̀a-Fernàndez and Canas (1991) & Garcia-Fernandez and Canas (1995) Iberia99 57 367 U 3.1 5.0 \(m_{bLg}\) U U \(r_{epi}\) 1 - 1 A
Geomatrix Consultants (1991), Sadigh et al. (1993) & Sadigh et al. (1997) California with 4 foreign 960+4 U 119+2 3.8 (6.8) 7.4 (7.4) \(M_w\) 0.1 (3) 305 (172)100 \(r_{rup}\) for some, \(r_{hypo}\) for small ones 2 G U A(R,S)
Huo and Hu (1991) W. USA with 25 foreign 383+25 - 14+2 5.0 7.4 (7.3) \(M_L\) or \(m_b\) for \(M<6.0\) and \(M_s\) otherwise 0.1 227 (265) \(r_{jb}\) 2 B O A
I.M. Idriss (1991) reported in Idriss (1993) Unknown 572 - 30* 4.6 7.4 \(M_L\) for \(M<6\), \(M_s\) for \(M\geq 6\) 1 100 \(r_{rup}\), \(r_{hypo}\) for \(M<6\) 1 U U A
Loh et al. (1991) Taiwan 112 - 63 4.0 7.1 \(M_L\) 5.0 178.3 \(r_{hypo}\) 1 L U A
Matuschka and Davis (1991) New Zealand 80 80 30 U U U U U U 3 B U A
Niazi and Bozorgnia (1991) array, Taiwan 236 234 12 3.6 7.8 \(M_L\) (\(M_D\)) for \(M_L<6.6\), else \(M_s\) 3.1101 119.7 \(r_{hypo}\) 1 M 2W A
Rogers et al. (1991) Worldwide 1241 - 180* 5.3* 8.1* \(M_L\) for \(M\leq 6\), \(M_s\) for \(6<M<8\) and \(M_w\) for \(M\geq 8\) 4* 400* \(r_{rup}\) if have, \(r_{hypo}\) otherwise 6 L 1 A
Stamatovska and Petrovski (1991) Mainly Italy and former Yugoslavia 489102 - 78 3* 8* \(M_L\) 10* 500* \(r_{hypo}\) 1 B 1 A
Abrahamson and Youngs (1992) Unknown U - U U U U U U U 1 U 1M A (U, U)
N. N. Ambraseys, Bommer, and Sarma (1992) USA + Europe + others 504 - 45 3.1 6.87 \(M_s\) 0.5 39 \(r_{jb}\), \(r_{epi}\) for some 1 L 1 A
J. Huo and Hu (1992) China & W. USA U - U U U \(M_s\) U U \(r_{jb}\) 1 U 1 A
Kamiyama, O’Rourke, and Flores-Berrones (1992) & Kamiyama (1995) Japan 357 - 82 4.1 7.9 \(M_{\mathrm{JMA}}\) 3.4 413.3 \(r_{hypo}\) I B O A
Sigbjörnsson and Baldvinsson (1992) Iceland 262 - 39 2.0 6.0 U 2 80 \(r_{jb}\) 2 B,L 2 A
Silva and Abrahamson (1992) W. USA with 4 foreign 136 - 12 6.1 7.4 \(M_w\) 3* 100* \(r_{seis}\) 2 G 1M A (S,R)
Taylor Castillo et al. (1992) Nicaragua, El Salvador & Costa Rica 89 - 27 3.0 7.6 \(M_s\) 6 210 \(r_{hypo}\) 1 L U A
Tento, Franceschina, and Marcellini (1992) Italy 137 - 40 4 6.6 \(M_L\) 3.2 170 \(r_{jb}\) for \(M_L \geq 5.7\), \(r_{epi}\) otherwise 1 L 2 A
Theodulidis and Papazachos (1992) Greece+16 foreign 105+16103 - 36+4 4.5 (7.2) 7.0 (7.5) \(M_s\), \(M_w\), \(M_{\mathrm{JMA}}\) 1 (48) 128 (236) \(r_{epi}\) 2 B O A
Abrahamson and Silva (1993) W. USA with 4 foreign 201 - 18 6.0 7.4 \(M_w\) 0.6* 100* \(r_{rup}\) 2 G 1M A (S, R)
Boore, Joyner, and Fumal (1993), Boore, Joyner, and Fumal (1997) & Boore (2005) W. N. America 271 - 20 5.1104 7.7 \(M_w\) 0 118.2 \(r_{jb}\) 3 L, G 2M A
Campbell (1993) Worldwide U - U U105 U \(M_L\) for \(M<6.0\) and \(M_s\) otherwise U U106 \(r_{seis}\) 2 M O A (T,S)
Dowrick and Sritharan (1993) New Zealand U - 8 U U U U U \(r_{jb}\) U U 1 A
Gitterman, Zaslavsky, and Shapira (1993) Israel U - U 3.9 5.1 \(M_L\) U U \(r_{epi}\) 1 U U A
McVerry et al. (1993) & McVerry, Dowrick, and Zhao (1995) New Zealand 256 - 31* 5.1 7.3 \(M_w\) 13 312 \(r_c\) or \(r_{hypo}\) 1 L 1 A, R
Midorikawa (1993a) Japan U - U 6.5 7.8 \(M_w\) U U \(r_{rup}\) 1 G 1 A
Quijada et al. (1993) S. America U - U U U U U U U U U U A
Singh et al. (1993) Nicaragua, El Salvador & Costa Rica 89 - 27 3.0 7.6 \(M_s\) 6 210 \(r_{hypo}\) 1 V O A
Steinberg et al. (1993) Worldwide U - U U 5* U U U \(r_{epi}\) 1 U 1 A
Sun and Peng (1993) W. USA with 1 foreign 150+1 - 42+1 4.1 7.7 \(M_L\) for \(M<6\), else \(M_s\) 2* 150* \(r_{epi}\) C R 1 A
Ambraseys and Srbulov (1994) Worldwide 947 - 76 5.0 7.7 \(M_s\) 1 375 \(r_{jb}\), \(r_{epi}\) 1 L 2W A
Boore, Joyner, and Fumal (1994a) & Boore, Joyner, and Fumal (1997) W. N. America 271 (70) - 20 (9) 5.1107 (5.3) 7.7 (7.4) \(M_w\) 0 118.2 (109) \(r_{jb}\) C L, G 1M, 2M A (R,S)108
El Hassan (1994) Unknown U - U U U \(M_L\) U U \(r_{hypo}\) 1 U 1 A
Fat-Helbary and Ohta (1994) Aswan, Egypt 50 - 50 U U \(m_b\) U U \(r_{hypo}\) 1 U 1 A
Fukushima, Gariel, and Tanaka (1994) & Fukushima, Gariel, and Tanaka (1995) 3 vertical arrays in Japan 285 284 42 5.0 7.7 \(M_{\mathrm{JMA}}\) 60* 400* \(r_{hypo}\) I B 1,2 A
Lawson and Krawinkler (1994) W. USA 250+ - 11 5.8 7.4 \(M_w\) U 100 \(r_{jb}\) 3 U 1M A
Lungu et al. (1994) Romania \(\approx 300\) 125 4 6.3 7.4 \(M_w\) U U \(r_{hypo}\) 1 U 1 A
Musson, Marrow, and Winter (1994) UK + 30* foreign 15 + 30* - 4+16 3 (3.7) 3.5 (6.4) \(M_L\) 70* (\(>\)1.3) \(>\)477.4 (200*) \(r_{hypo}\) 1 U109 O A
Radu et al. (1994), Lungu, Coman, and Moldoveanu (1995) & Lungu et al. (1996) Romania 106 - 3 6.7(\(M_L\)) or 7.0(\(M_w\)) 7.2(\(M_L\)) or 7.5(\(M_w\)) U110 90* 320* \(r_{hypo}\) 1 L 1 A
Ramazi and Schenk (1994) Iran 83 83 20 5.1 7.7 \(M_s\)111 \(\leq 8\) \(\geq 180\) \(r_{hypo}\) for most, \(r_{rup}\) for 19112 2 U U A
Xiang and Gao (1994) Yunnan, China + 114 W. N. America 131+114 - U 2.5* 7.6* \(M_s\) (\(M_L\)) 2* 120* \(r_{epi}\) 1 L U A
Aman, Singh, and Singh (1995) Himalayan region 84* - 5 5.7 7.2 \(M_B\) 3* 350* \(r_{epi}\) 1 U U A
N. N. Ambraseys (1995) Europe and Mid. East 830 620 334 4.0 7.3 \(M_s\) 0* 260* \(r_{jb}\) for \(M_s>6.0\), \(r_{epi}\) otherwise 1 L 2W A
Dahle et al. (1995) Cen. America 280 - 72 3* 8* \(M_w\) (\(M_s\), \(m_b\),\(M_D\)) 6* 490* \(r_{hypo}\) 2 L 1B A
V. W. Lee, Trifunac, Todorovska, et al. (1995) W. N. America 1926 1926 297 1.7 7.7 Usually \(M_L\) for \(M\leq 6.5\) and \(M_s\) for \(M>6.5\) 2 200+ \(r_{hypo}\) 9, 3 \(\times\) C U 1 A
Lungu et al. (1995) Romania 106 - 3 6.7(\(M_L\)) or 7.0(\(M_w\)) 7.2(\(M_L\)) or 7.5(\(M_w\)) U113 U U \(r_{hypo}\) 1 L 1 A
Molas and Yamazaki (1995) Japan 2166 - 387 4.1* 7.8* \(M_{\mathrm{JMA}}\) 8* 1000* \(r_{rup}\) for 2 earthquakes, \(r_{hypo}\) otherwise I L O A
Sarma and Free (1995) E. N. America114 77 - 33 2.8 5.9 \(M_w\) (\(m_b\), \(M_L\), \(M_s\)) 0 820 \(r_{jb}\) or \(r_{epi}\) 2 U 1 A
N. N. Ambraseys, Simpson, and Bommer (1996) & Simpson (1996) Europe & Mid. East 422 - 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M_s>6.0\), \(r_{epi}\) otherwise 3 L 2W115 A
N. N. Ambraseys and Simpson (1996) & Simpson (1996) Europe & Mid. East - 417 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M>6.0\), \(r_{epi}\) otherwise 3 - 2W116 A
Aydan, Sedaki, and Yarar (1996) & Aydan (2001) Turkey 27* 23* 19* 3.5* 7.6* \(M_s\) 10* 350* \(r_{hypo}\) 1 U 1 A
Bommer et al. (1996) El Salvador & Nicaragua 36 - 20 3.7 7.0 \(M_s\) 62 260 \(r_{hypo}\) 1 L U A
Crouse and McGuire (1996) Cen. & S. California 238 - 16 6.0 7.7 \(M_s\) 0.1 211 \(r_{rup}\) 4 G 1W R,S (R,S)
Free (1996) & Free, Ambraseys, and Sarma (1998) Stable continental regions 558 478 H: 222, V: 189 1.5 6.8 \(M_w\) 0 820 \(r_{jb}\) for some, \(r_{epi}\) for most 2 L 1 A
Inan et al. (1996) Turkey U - U U U U U U \(r_{epi}\) 1 U U A
Ohno et al. (1996) California 248 - 17 5.0 7.5 \(M_w\) (\(M_L\)) 7.2 99.6 \(r_q\) for \(M>5.3\), \(r_{hypo}\) otherwise 2 B 2M A
Romeo, Tranfaglia, and Castenetto (1996) Italy 95 - 17 4.6* 6.8* \(M_w\) 1.5, 1.5 179, 180 Both \(r_{jb}\) & \(r_{epi}\) 2 L 1 A
Sarma and Srbulov (1996) Worldwide 350 - 114 3.9 7.7 \(M_s\) 1 213 \(r_{jb}\) & \(r_{epi}\) 1 B, L U A
Singh, Aman, and Prasad (1996) Himalayas 86 - 5 5.7 7.2 \(m_b\) 33.15 340.97 \(r_{hypo}\) 1 U 1 A
Spudich et al. (1996) & Spudich et al. (1997) Worldwide extensional regimes 128 - 30 5.10 6.90 \(M_w\) 0 102.1 \(r_{jb}\) 2 G, O 2M NS
Stamatovska and Petrovski (1996) Romania, Bulgaria & former Yugoslavia 190117 - 4 6.1 7.2 \(M_L\)118 10* 310* \(r_{epi}\) 1 B 1 A
Ansal (1997) Turkey U - U U U \(M_w\) U U \(r_{hypo}\) 1 U U A
Campbell (1997), Campbell (2000), Campbell (2001) & Campbell and Bozorgnia (1994) Worldwide 645 225 H:47, V:26 4.7 H:8.0, V:8.1 \(M_w\) 3 60 \(r_{seis}\) 3 G 1 A(S,R,N)
Munson and Thurber (1997) Hawaii 51 - 22 4.0 7.2 \(M_s\) for \(M_s \geq 6.1\), \(M_L\) otherwise 0 88 \(r_{jb}\) 2 L 2M A
Pancha and Taber (1997) New Zealand U - U U U U U U U 1 U 2 A
Rhoades (1997) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 1 L O A
Schmidt, Dahle, and Bungum (1997) Costa Rica 200 - 57 3.3 7.6 \(M_w\) (\(M_s\), \(m_b\), \(M_D\)) 6.1 182.1 \(r_{hypo}\) 3 L, B O A
Youngs et al. (1997) Worldwide subduction zones 476 - 164 5.0 8.2 \(M_w\) (\(M_s\),\(m_b\)) 8.5 550.9 \(r_{rup}\), \(r_{hypo}\) for some 2 G 1M NT
Zhao, Dowrick, and McVerry (1997) NZ with 66 foreign 461119+66 - 49+17 5.08 7.23(7.41) \(M_w\) 11 (0.1) 573 (10) \(r_{rup}\) for some, \(r_c\) for most 2 U 1 A(R)
Baag et al. (1998) Korea U - U U U U U U \(r_{epi}\) 1 U U A
Bouhadad et al. (1998) Algeria U - 2 5.6 6.1 \(M_s\) 20 70 \(r_{hypo}\) 1 L, M 1 A
Costa, Suhadolc, and Panza (1998) Friuli 80* 80* 20* 1.3* 4.3* \(M_D\) 3* 66* \(r_{hypo}\) 1 U 1 A
Manic (1998) N.W. Balkans 276120 - 56 4 7 \(M_s\) U U \(r_{hypo}\) 2 B 1 A
Reyes (1998) University City, Mexico City 20+ - 20+ U U \(M_w\) U U \(r_{rup}\) I S U A
Rinaldis et al. (1998) Italy & Greece 137* - 24* 4.5 7 \(M_s\) or \(M_w\) 7 138 \(r_{epi}\) 2 U O A (N,ST)
Sadigh and Egan (1998) California with 4 foreign 960+4 - 119+2 3.8 7.4 \(M_w\) 0.1 305121 \(r_{rup}\) for some, \(r_{hypo}\) for small ones 2 G U A(R,SN)
Sarma and Srbulov (1998) Worldwide 690122 - 113 3.9 7.7 \(M_s\) (U) 0 197 \(r_{jb}\), \(r_{epi}\) 2 B 1 A
Sharma (1998) Indian Himalayas 66 - 5 5.5 6.6 U 8 248 \(r_{hypo}\) 1 L 1W A
Smit (1998) Switzerland + some from S. Germany \(\ll\) 1546 \(<\)1546 H: \(<\)120, V: 120 2.0 5.1 \(M_L\) 1 290 \(r_{hypo}\) 1 U 2 A
N. P. Theodulidis (1998) EuroSeisTest (N. Greece) 225 - 51 1.7 5.1 \(M_w\) 8 88 \(r_{hypo}\), \(r_{epi}\) 1 B 1 A
Theodulidis et al. (1998) Kozani-Grevena (Greece) 232123 - \(>\)23 3.1 6.6 \(M_w\) 1 140* \(r_{epi}\) 1 B O A
Cabañas et al. (1999), Cabañas et al. (2000), Benito et al. (2000) & Benito and Gaspar-Escribano (2007) Mediterranean region124 U U U 2.5 7.0 \(M_s\)125 0 250 \(r_{epi}\)126 4 L 1 A
Chapman (1999) W. N. America 304 - 23 5.0 7.7 \(M_w\) 0.1 189.4 \(r_{jb}\) 3 G 2M A
Cousins, Zhao, and Perrin (1999) NZ with 66 foreign 610+66 - 25+17 5.17 7.09(7.41) \(M_w\) 0.1 400 \(r_{rup}\) for some, \(r_c\) for most 3 U U A(R)
Gallego and Ordaz (1999) & Gallego (2000) Colombia U - U U U U U U U U U U A
Ólafsson and Sigbjörnsson (1999) Iceland 88127 - 17 3.4 5.9 \(M_w\)128 2 112 \(r_{epi}\) 1 B 1 A
Spudich et al. (1999) Worldwide extensional regimes 142 - 39 5.1 7.2 \(M_w\) 0 99.4 \(r_{jb}\) 2 G, O 1M NS
Wang, Wu, and Bian (1999) Tangshan, N. China 44 - 6 3.7 4.9 \(M_s\) (\(M_L\)) 2.1 41.3 \(r_{epi}\) 1 L 1 A
Zaré, Ghafory-Ashtiany, and Bard (1999) Iran 468 468 47* 2.7 7.4 \(M_w\) (\(M_s\), \(m_b\), \(M_L\)) 4 224 \(r_{hypo}\) (\(r_{rup}\) for 2) 4 B 2M R, RS & S
N. Ambraseys and Douglas (2000), Douglas (2001b) & Ambraseys and Douglas (2003) Worldwide 186 183 44 5.83 7.8 \(M_s\) 0 15 \(r_{jb}\) 3 L 1 A
Bozorgnia, Campbell, and Niazi (2000) Worldwide 2823 2823 48 4.7 7.7 \(M_w\) U \(\leq 60\) \(r_{seis}\) 4 G U A (R,S,T)
Campbell and Bozorgnia (2000) Worldwide 960129 941130 49131 4.7 7.7 \(M_w\) 1* 60* \(r_{seis}\) 4 G 1 A (S,R,T)
Field (2000) S California 447 - 28 5.1 7.5 \(M_w\) 0 148.9 \(r_{jb}\) C (6) G 1M A (R, S, O)
Jain et al. (2000) Central Himalayas 32 (117) - 3 5.5 7.0 U 2 (4) 152 (322) \(r_{epi}\) 1 U 1 T
Kobayashi et al. (2000) Japan U - U 5.0 7.8 \(M_w\) 0.9* 400* U 4 B 1M A
Monguilner, Ponti, and Pavoni (2000) W. Argentina 54132 - 10 4.3 7.4 \(M_s\) if \(M_L\) & \(M_s>6\), \(M_L\) otherwise 11 350 \(r_{hypo}\) 2 U 1W A
Paciello, Rinaldis, and Romeo (2000) Greece & Italy 115 - 18 4.5* U \(M_w\) or \(M_s\) U U \(r_{epi}\) 3 B 1 A (N)
Sharma (2000) Indian Himalayas - 66 5 5.5 6.6 U 8 248 \(r_{hypo}\) 1 - 1W A
Si and Midorikawa (1999, 2000) Japan 856 - 21 5.8 8.3 \(M_w\) 0* 280* Both \(r_q\) & \(r_{rup}\) 2 L O A
P. Smit et al. (2000) Caucasus 84 - 26 4.0 7.1 \(M_s\) 4 230 \(r_{epi}\)133 1 L 2 A
Takahashi et al. (2000) Japan+166 foreign 1332 - U+7* 5* (5.8*) 8.3* (8*) \(M_w\) 1* (0.1*) 300* (100*) \(r_{rup}\), \(r_{hypo}\) for some 4 G O A
G. Wang and Tao (2000) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L O A
S. Y. Wang and others (2000) China U - U U U U U U \(r_{hypo}\) 1 U 1 A
Chang, Cotton, and Angelier (2001) Taiwan 4720134, 2528135 -

45

, 19

4.1

, 4.6

7.0

, 6.3

\(M_w\) (\(M_L\) for \(M_L<6.5\))

0

, 40.2

264.4

, 272.4

\(r_{epi}\)

, \(r_{hypo}\)

1 G 2 A
Herak, Markus̆ić, and Ivančić (2001) Dinarides 145 145 46 4.5 6.8 \(M_L\) 3* 200* \(r_{epi}\) 1 L 2 A
Lussou et al. (2001) Japan 3011 3011 102 3.7 6.3 \(M_{\mathrm{JMA}}\) 4* 600* \(r_{hypo}\) 4 B 2 A
Sanchez and Jara (2001) Pacific coast of Mexico U - U U U \(M_s\) U U \(r_{epi}\) 1 U U BF
Wu, Shin, and Chang (2001) Taiwan 1941 - 60 4.8 7.6 \(M_w\) (\(M_L\)) 0.05* 400* \(r_{rup}\) (\(r_{epi}\) for some) 1 & I U U A
Y.-H. Chen and Tsai (2002) Taiwan 424 - 48 U U \(M_L\) U U \(r_{hypo}\) 1 U O A
N. Gregor, Silva, and Darragh (2002) Shallow crustal worldwide (mainly California) 993 993 68 4.4 7.4 \(M_w\) 0.1 267.3 \(r_{rup}\) 2 U 1M A (S, R/O, T)
Gülkan and Kalkan (2002) Turkey 93136 - 19 4.5 7.4 \(M_w\) 1.20 150 \(r_{jb}\), \(r_{epi}\) 3 L, R 1 A
Iglesias et al. (2002) Mexico U - 10 5.4 7.4 \(M_w\) U 400* \(r_{hypo}\) 1 V 1 B
Khademi (2002) Iran 160 160 28* 3.4* 7.4 \(M_w\) (\(m_b\) for \(M_s<5\) and \(M_s\) otherwise) 0.1* 180* \(r_{jb}\), \(r_{epi}\) for \(M<5.9\) 2 L O A
Margaris et al. (2002a) & Margaris et al. (2002b) Greece 744 - 142 4.5 7.0 \(M_w\) 1 150 \(r_{epi}\) 3 B O A
Saini, Sharma, and Mukhopadhyay (2002) Indian Himalayas U U U U U U U U U U U U A
Schwarz et al. (2002) N.W. Turkey 683 683 U 0.9* 7.2 \(M_L\) 0* 250* \(r_{epi}\) 3 U 1 A
Stamatovska (2002) Romania 190137 - 4 6.1 7.2 U 10* 310* \(r_{epi}\) 1 B 1 A
Tromans and Bommer (2002) Europe 249 - 51 5.5 7.9 \(M_s\) 1 359 \(r_{jb}\) 3 L 2 A
Zonno and Montaldo (2002) Umbria-Marche 161 - 15 4.5 5.9 \(M_L\) 2* 100* \(r_{epi}\) 2 L 2 N, O
Alarcón (2003) Colombia 47 - U 4.0 6.7 \(M_s\) 49.7 322.4 \(r_{hypo}\) 1 U U A
Alchalbi, Costa, and Suhadolc (2003) Syria 49 49 10 3.5 5.8 \(M_{CL}\) 21 400 \(r_{hypo}\) 2 U 1 A
Atkinson and Boore (2003) Subduction zones 1200+ - 43* 5.5 8.3 \(M_w\) 11* 550* \(r_{rup}\) 4 C 1M F, B
Boatwright et al. (2003) N. California 4028 - 104 3.3 7.1 Mainly \(M_w\), \(M_L\) for some 1* 370* \(r_{hypo}\) 4 U O A
Bommer, Douglas, and Strasser (2003) Europe & Mid. East 422 - 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M_s>6.0\), \(r_{epi}\) otherwise 3 L 1M A (S, R, N)
Campbell and Bozorgnia (2003d), Campbell and Bozorgnia (2003a) & Bozorgnia and Campbell (2004b) Worldwide 443138 439139 36140 4.7 7.7 \(M_w\) 2* 60* \(r_{seis}\) 4 G 1 A (S & N, R, T)
Halldórsson and Sveinsson (2003) Iceland 131 - 12 4.1 6.6 \(M_{Lw}\) 5* 300* U 1 U 1 A
Li and others (2003) Yunnan, China U - U U 7.6 U U U \(r_{epi}\) 1 EW 1 A
Nishimura and Horike (2003) Japan U U U U U \(M_{JMA}\) U U \(r_{hypo}\) U U 1 A
Shi and Shen (2003) Shanghai region U - U U U \(M_s\) U U \(r_{hypo}\) 1 U U A
Sigbjörnsson and Ambraseys (2003) Europe & Middle East 465 - U 5* 7* \(M_w\) or \(M_s\) 1* 500* \(r_{jb}\) if available, \(r_{epi}\) otherwise 1 L 1 S
Skarlatoudis et al. (2003) Greece 1000 - 225 4.5 7.0 \(M_w\) (\(M_L\)) 1.5* 150* \(r_{epi}\) 2 U O A (N, ST)
Ulutaş and Özer (2003) Turkey 221 - U 5 7.4 \(M_w\) U U \(r_{epi}\) 1 U U A
Zhao and others (2003) Yunnan, China U - U U 7.6 U U U \(r_{epi}\) 1 U 1 A
Beauducel, Bazin, and Bengoubou-Valerius (2004) Guadeloupe 1430 - 398 1.1 6.3 \(M_D\) (\(m_b\), \(M_w\)) 1.7 450 \(r_{hypo}\) 1 R 1 A
Beyaz (2004) Unknown (Turkey?) U - U U U \(M_w\) U U \(r_{epi}\) 1 U 1 A
Bragato (2004) NE Italy (\(45\)\(46.5^{\circ}\)N & \(12\)\(14^{\circ}\)E) 814 - 192 2.5 4.5 \(M_L\) U U \(r_{epi}\) 1 U O A
Cantavella et al. (2004) Iberia U - U 2.5 5.1 \(M_{bLg}\) 4 284 \(r_{epi}\) 1 U 1 A
Gupta and Gupta (2004) Koyna region, India 31 31 U U 6.5 \(M_L\) 3* 25* \(r_{hypo}\) 1 L O A
Iyengar and Ghosh (2004) N India 61 - \(>\)5 5.5* 6.6* U 8* 248* \(r_{hypo}\) 1 L 1 A
Kalkan and Gülkan (2004a) Turkey - 100 47 4.2 7.4 \(M_w\) (unspecified scales) 1.2 250 \(r_{jb}\), \(r_{epi}\) for small events 3 - 1 A
Kalkan and Gülkan (2004b) and Kalkan and Gülkan (2005) Turkey 112 - 57 4.0 7.4 \(M_w\) (unspecified scales) \(1.2\) \(250\) \(r_{jb}\), \(r_{epi}\) for small events 3 L141 1 A
Lubkowski et al. (2004) Stable continental regions 163 - U 3.0 6.8 \(M_w\) (\(M_L\)) 0 854 \(r_{epi}\) (\(r_{jb}\) for 1 event) 1 U 1, 1M, 2, 2M A
Marin et al. (2004) France 63 - 14 2.6 5.6 \(M_L\) 5 700 \(r_{hypo}\) 1 L 1 A
Midorikawa and Ohtake (2004) Japan 3335 - 33 5.5 8.3 \(M_w\) 0* 300* \(r_{rup}\) 2 L 1 A (C, B, F)
Özbey et al. (2004) NW Turkey 195 - 17 5.0 7.4 \(M_w\) (\(M_L\)) 5* 300* \(r_{jb}\) 3 G 1M NS
Pankow and Pechmann (2004) and Pankow and Pechmann (2006) Worldwide extensional regimes 142 - 39 5.1 7.2 \(M_w\) 0 99.4 \(r_{jb}\) 2 G, O 1M NS
Skarlatoudis et al. (2004) Greece 819 - 423 1.7 5.1 \(M_w\) 3 40 \(r_{epi}\) 1 U O A
Sunuwar, Cuadra, and Karkee (2004) Okhotsk-Amur plate boundary 667 667 42 4.0 5.6 \(M_{\mathrm{JMA}}\) \(>\)3 \(>\)264 \(r_{hypo}\) 1 L 2M A
Ulusay et al. (2004) Turkey 221 - 122 4.1 7.5 \(M_w\) (\(M_s\), \(m_b\), \(M_d\), \(M_L\)) 5.1 99.7 \(r_{epi}\) 3 L 1 A
Y.-X. Yu and Wang (2004) W USA 187 - \(>\)17 5.0* 7.8* U 2* 200* \(r_{epi}\) 1 B O A
Adnan et al. (2005) Worldwide subduction 1100 - U 5.3 8.5 \(M_w\) U U \(r_{hypo}\) 1 A 1 BF
N. N. Ambraseys et al. (2005a) Europe & Middle East 595 - 135 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 L 1WM A (N, T, S, O)
N. N. Ambraseys et al. (2005b) Europe & Middle East - 595 135 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 - 1WM A (N, T, S, O)
Bragato (2005) Worldwide 243 - 60* 5.0 7.8 \(M_s\) 0 15 \(r_{jb}\) 1 L O A
Bragato and Slejko (2005) E Alps (\(45.6\)\(46.8^{\circ}\)N & \(12\)\(14^{\circ}\)E) 1402 3168 240 2.5 6.3 \(M_L\) 0 130 \(r_{jb}\) & \(r_{epi}\) 1 R O A
Frisenda et al. (2005) NW Italy 6899142 - \(>\)1152 0.0* 5.1143 \(M_L\) 0 300144 \(r_{hypo}\) 2 B 1 A
Garcı́a et al. (2005) Central Mexico 277 277 16 5.2 7.4 \(M_w\) 4* 400* \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 G145 1M B
Liu and Tsai (2005) Taiwan 7907 7907 51 4.05 7.10 \(M_w\) (\(M_L\)) 5* 300* \(r_{hypo}\) 1 M 2M A
McGarr and Fletcher (2005) Central Utah coal-mining areas 72 - 12 0.98 4.2 \(M_w\) (\(M_{CL}\)) 0.5* 10* \(r_{hypo}\) 2 L 2M M
Nath, Vyas, Pal, and Sengupta (2005) Sikkim (Himalaya) 240* - 80 3 5.6 \(M_L\) 10* 100* \(r_{hypo}\) 1 U 1 A
Nowroozi (2005) Iran 279 279 45 3.0* 7.4 \(M_w\) (\(M_s\), \(m_b\), \(M_L\)) 2 245 \(r_{epi}\) 4 V 1 A
Ruiz and Saragoni (2005) & Saragoni, Astroza, and Ruiz (2004)146 Chile 41 41 8 6.4 7.8 \(M_s\) 35.72 315.01 \(r_{hypo}\) 1 B 1 F
Takahashi et al. (2005), Zhao et al. (2006) and Fukushima et al. (2006) Japan+208 overseas 4518+208 - 249+20 5.0 8.3 \(M_w\) 0* 300* \(r_{rup}\) 5 G 1M C (R, S/N) & F, B
Wald et al. (2005) California U - U U 5.3* \(M_w\) U U \(r_{jb}\) 1 L U A
G. M. Atkinson (2006) Los Angeles region 4179 - 485+ 3.1* 7.1* \(M_w\) 5* 300* \(r_{epi}\) (\(r_{jb}\) for some) I, C B 1 A
Beyer and Bommer (2006) Shallow crustal (USA, Taiwan, Turkey and others) 949 - 103 4.3* 7.9* \(M_w\) 6* 200* \(r_{hypo}\) U 1, 2, A, B, C, D50, G, I50, L, N, P, R 1M A (U)
Bindi et al. (2006) Umbria-Marche 239 - 45 4.0 5.9 \(M_L\) 1* 100* \(r_{epi}\) & \(r_{hypo}\) 4 L 1M NS
Campbell and Bozorgnia (2006a) and Campbell and Bozorgnia (2006b) Worldwide 1500+ - 60+ 4.2 7.9 \(M_w\) 0 200 \(r_{rup}\) C G 2M A (R, S, N)
Costa et al. (2006) NE Italy & Slovenia 900* 900* 123 3.0* 6.5* U 1* 100* \(r_{epi}\) 2 L, V 1 A
Gómez-Soberón, Tena-Colunga, and Ordaz (2006) Mexico 1983 - 109 4.5* 8.1* \(M_w\) (\(M_s\) if \(M>6\), \(m_b\) if \(M<6\)) 5* 800* \(r_{hypo}\) (\(r_{rup}\) for some) 1 U 2 F
Hernandez et al. (2006) Haulien LSTT (Taiwan) 456 456 51 5 7.3 \(M_L\) 13.7 134.8 \(r_{hypo}\) 5 B 1 A
Jaimes, Reinoso, and Ordaz (2006) Ciudad Universitaria station, Mexico City 21 - 21 6.0 8.1 \(M_w\) 285 530 \(r_{rup}\) 1 U 1B F
Jean et al. (2006) Taiwan U (\(>\)3000) - 59 (\(>\)242) 5.0* 7.5* \(M_L\) 0.1* 300* \(r_{hypo}\) (\(r_{rup}\) for 1 event) 1, I G 1 A
Kanno et al. (2006) Japan+some foreign 3392+377 (shallow) & 8150 (deep) - 73+10 & 111 5.0* (6.1) & 5.5* 8.2* (7.4) & 8.0* \(M_w\) (\(M_{\mathrm{JMA}}\)) 1* (1.5*) & 30* 450* (350*) & 450* \(r_{rup}\) (\(r_{hypo}\) for some) C R 2M A
Kataoka et al. (2006) Japan 5160 - 47 4.8* 6.9* \(M_w\) 1* 200* U 1 U U C
Laouami et al. (2006) Algeria 28 - 4 5.6 6.0 \(M_s\) 13 70 \(r_{epi}\) & \(r_{hypo}\) 1 U 1 A
Luzi et al. (2006) Molise (Italy) 886 - U 2.6* 5.7 \(M_L\) 5* 55* \(r_{hypo}\) 2 L 1M A
Mahdavian (2006) Central Iran147 150 150 U 3.1 7.4 \(M_s\) (\(m_b\)) 4 98 \(r_{hypo}\) 2 A 1 A
McVerry et al. (2006) New Zealand+66 overseas 535+66 - 49+17 5.08 (5.2) 7.23 (7.4) \(M_w\) 6 (0.1) 400 (10) \(r_c\) (\(r_{rup}\)) 3 L, G 1M C (R, OR, S & N) & F, B
Moss and Der Kiureghian (2006) W. N. America 271 - 20 5.2 7.7 \(M_w\) 0 118.2 \(r_{jb}\) C G O A
Pousse et al. (2006) Japan 9390148 - U 4.1 7.3 (\(M_w\)) 5* 250* \(r_{hypo}\) (\(r_{rup}\) for some) 5 B 2M A
Souriau (2006) France 175 - 20 3.0 5.4 \(M_L\) (ReNass & LDG) 10* 800* \(r_{hypo}\) 1 L 1 A
Tapia (2006) & Tapia, Susagna, and Goula (2007) Western Mediterranean 334 - 30 3.8 6.0 \(M_L\) 6 542 \(r_{epi}\) 1 U 1 A
Tsai, Chen, and Liu (2006) Taiwan 7123 - 744 4* 7.3* \(M_L\) 0* 330* \(r_{hypo}\) 1 G O A
Zare and Sabzali (2006) Iran 89 89 55* 2.7 7.4 \(M_w\) 4 167 \(r_{hypo}\) 4 U 1M & 2M A
Akkar and Bommer (2007a) Europe & Middle East 532 - 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) 3 G 1WM A (N, S, R)
Amiri, Mahdavian, and Dana (2007a) & Amiri, Mahdavian, and Dana (2007b) Alborz and central Iran149 200* 200* 50* 4.5* 7.3* \(M_s\) (\(m_b\)) 5* 400* \(r_{hypo}\) 2 L 1 A
Aydan (2007) Turkey U - U U U U U U \(r_{hypo}\) C U U A
Bindi et al. (2007) NW Turkey 4047 4047 528 0.5 5.9 \(M_L\)150 5* 200* \(r_{hypo}\)151 2 L 1M A
Bommer et al. (2007) Europe and Middle East 997 - 289 3 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 G 1WM A (N, S, R)
Boore and Atkinson (2007) & Boore and Atkinson (2008) Worldwide shallow crustal 1574 - 58 4.27152 7.90153 \(M_w\) 0 280154 \(r_{jb}\) C I50 2M A (N, R, S, U)
Campbell and Bozorgnia (2007), Campbell and Bozorgnia (2008b) & Campbell and Bozorgnia (2008a) Worldwide shallow crustal 1561 - 64 4.27155 7.90156 \(M_w\) 0.07 199.27 \(r_{rup}\) C I50 1M A (N, R, S, HW)
Danciu and Tselentis (2007a), Danciu and Tselentis (2007b) & Danciu (2006) Greece 335 - 151 4.5 6.9 \(M_w\) 0* 136 \(r_{epi}\) 3 A 1M A (ST, N)
Douglas (2007) \(M_w\) \(r_{jb}\) 1 A
S. Fukushima, Hayashi, and Yashiro (2007) Japan (central Honshu) 8615 - 158 5.0 6.8 \(M_{JMA}\) 18.1 448.4 \(r_{rup}\) 1 V 1 A
Graizer and Kalkan (2007, 2008) Worldwide shallow crustal 2583 - 47 4.9157 7.9158 \(M_w\) 0.1 349.6159 \(r_{rup}\) C U O A (R,SN)
Güllü and Erçelebi (2007) Turkey 210 - U 3.2 7.4 \(M_w\) 1 364 \(r_{epi}\) 4 V3 1 A
Hong and Goda (2007) & Goda and Hong (2008) California 592 - 39 5* 7.3* \(M_w\) 0.2* 100* \(r_{jb}\) C G, Q, R 1M A
Massa et al. (2007) Central northern Italy 1063 - 243 2.5 5.2 \(M_L\) 0* 300* \(r_{hypo}\) 2 L 1 A
Popescu et al. (2007) Romania U - 58 4* 7.1 \(M_w\) \(\leq\) 70 \(\geq\) 227 \(r_{epi}\), \(r_{hypo}\) C L O A
Sobhaninejad, Noorzad, and Ansari (2007) Europe & Middle East 589 589 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 L O A (N, T, S, O)
Tavakoli and Pezeshk (2007) Taiwan 424 - 48 4.3* 7.3* \(M_L\) 5* 260* \(r_{hypo}\) 1 G O A
Tejeda-Jácome and Chávez-Garcı́a (2007) Colima, Mexico 162 162 26 3.3 5.2 \(M_L\) 5* 175 \(r_{hypo}\) 1 G 2M A
Abrahamson and Silva (2008) & Abrahamson and Silva (2009) Worldwide shallow crustal 2754 - 135 4.27160 7.9161 \(M_w\) 0.06* 200* \(r_{rup}\) C I50 1M A (N, R, S, HW)
Ágústsson, orbjarnardóttir, and Vogfjör (2008) South Iceland 1085 1085 64 3.5 6.5 \(M_{Lw}\) 3* 350* \(r_{epi}\) 1 V3 1 A
Aghabarati and Tehranizadeh (2008) Worldwide shallow crustal 646 - 54 5.2 7.9 \(M_w\) 0 60 \(r_{rup}\)162 C G 1M A (N, R, S)
Al-Qaryouti (2008) Dead Sea area 57 - 30 3.7 6.2 \(M_L\) 5.8 330.6 \(r_{epi}\) 1 L 2 A
C. Cauzzi and Faccioli (2008), C. V. Cauzzi (2008) & C. Cauzzi, Faccioli, Paolucci, et al. (2008) Worldwide shallow crustal 1164 1132 60 5.0 7.2 \(M_w\) 6* 150* \(r_{hypo}\) 4 & C G 2M A (N, R, S)
L. Chen (2008) China, Taiwan and Japan 249 249 55 4.2 7.6 \(M_w\) (\(M_L\), \(M_s\)) 10 & 12 153 & 153 \(r_{epi}\) & \(r_{hypo}\) 2 G & L 2 A
B. S.-J. Chiou and Youngs (2008) Worldwide shallow crustal 1950 - 125 4.265163 7.90164 \(M_w\) 0.2*165 70*166 \(r_{rup}\) C I50 1M A (N, R, S, HW, AS)
Cotton et al. (2008) Japan 3894 - 337 4 7.3 \(M_w\) (\(M_{\mathrm{JMA}}\)) 1* 100* \(r_{rup}\) (\(r_{hypo}\) for small) 4167 & 2168 G 2M A
Güllü, Ansal, and Özbay (2008) Turkey 210 - U 3.2 7.4 \(M_w\) 10* 100* \(r_{epi}\) 2 L3 1 A
Humbert and Viallet (2008) Europe & Middle East 960 - 138 4.0 7.4 \(M_s\) U U \(r_{hypo}\) 1 U O A
Idriss (2008) Worldwide shallow crustal 942 - 72 4.5 7.7 \(M_w\) 0.3 199.3 \(r_{rup}\) 2 I50 1 A (R/RO/NO, S/N)
Lin and Lee (2008) NE Taiwan+10 foreign 4244+139 - 44+10 4.1 (6.0) 7.3 (8.1) \(M_w\) (\(M_L\)) 15 630 \(r_{hypo}\) 2 G 1W A (B, F)
Massa et al. (2008) Northern Italy 306 306 82 3.5 & 4.0 6.3 & 6.5 \(M_w\) (\(M_L\)) & \(M_L\) 1* 100* \(r_{epi}\) 3 L 1M A
Mezcua, Garcı́a Blanco, and Rueda (2008) Spain 250 - 149 3.1 5.3 \(M_w\) (\(m_b (L_g)\)) 5* 100* \(r_{hypo}\) 1 U 1 A
Morasca et al. (2008) Molise 3090 3090 100 2.7 5.7 \(M_L\) 12* 60* \(r_{hypo}\) 2 L 1M A
Slejko et al. (2008) Caucasus (\(36\)\(46^{\circ}\)N, \(38\)\(52^{\circ}\)E) 200 - \(\geq\)21 4.0* 8.1* \(M_s\) (\(M_L\), \(M_w\), \(m_b\)) 2* 100* \(r_{epi}\) 1 U O A
Srinivasan et al. (2008) Kolar Gold Fields, India 795 - 795 0.5 3.0 \(M_L\) 1 4.76 \(r_{hypo}\) 1 G 1 A
Adnan and Suhatril (2009) Lalaysia 93 - 14 6.7 9.1 \(M_w\) 466 2487 \(r_{rup}\) 1 G 1M F, B
Aghabarati and Tehranizadeh (2009) Worldwide shallow crustal 678 678 55 5.2 7.9 \(M_w\) 0 60 \(r_{rup}\) C G 1M A (N, R, S)
Akyol and Karagöz (2009) Western Anatolia 168 - 49 4.03 6.40 \(M_w\) (\(M_d\), \(M_L\)) 15 200 \(r_{hypo}\) 2 L 2M A
Baruah et al. (2009) Shillong plateau (India) 82 - U 2.5* 5.0* \(M_s\) (\(M_D\)) 3.5 144.5 \(r_{hypo}\) 1 A 1 A
Bindi, Luzi, and Pacor (2009) Italy 241 241 27 4.8 6.9 \(M_w\) 0 190 \(r_{jb}\) (\(r_{epi}\) for small) 3 L, G 1M A (N, S, R)
Bindi, Luzi, et al. (2009) Italy 235 - 27 4.6 6.9 \(M_w\) (\(M_L\)) 0 183 \(r_{jb}\), \(r_{epi}\) 3 L 1M A
Bragato (2009) Italy 922 - 116 2.7 4.5 \(M_L\) 6 100 \(r_{epi}\) I, 3, 1, C U 1 A
Cabalar and Cevik (2009) Turkey 93169 - 19 4.5 7.4 \(M_w\) 1.20 150 \(r_{jb}\), \(r_{epi}\) 3 L, R O A
Garcı̀a Blanco (2009) Spain U - 149 U 5.3 U 10* 100* \(r_{epi}\) 1 U 1 A
Goda and Atkinson (2009) Japan 8557 (3410 shallow, 5147 deep) - 155 (51 shallow, 104 deep) 5.5 7.9 \(M_w\) 1.5* 300* \(r_{rup}\) (\(r_{hypo}\) for some \(M<6.5\)) C G 2M A (C/F, B)
H. P. Hong, Pozos-Estrada, and Gomez (2009) Mexico (interface & inslab) 418, 277 -, - 40, 16 5.0, 5.2 8.0, 7.4 \(M_w\) U U \(r_{rup}\) (\(r_{hypo}\) for small) 1 G, R, Q 1M F, S
H. P. Hong, Zhang, and Goda (2009) California 592 - 39 5* 7.3* \(M_w\) 0.2* 100* \(r_{jb}\) C G, R 1M, 2M, O A
Kuehn, Scherbaum, and Riggelsen (2009) Worldwide 2660 - 60 5.61 7.9* \(M_w\) 0.1* 200* \(r_{jb}\) C G 1M (O) A (N, R, S)
Li, Li, and Li (2009) Yunnan, China 240 - U 3.0 7.9 U 5 25 \(r_{epi}\) 1 U 1 A
Mandal et al. (2009) Gujarat, India 248 - 33 3.1 7.7 \(M_w\) 1* 300* \(r_{jb}\) 2 L 2 A
Moss (2009) & Moss (2011) Worldwide shallow crustal 1950 - 125 4.265 7.90 \(M_w\) 0.2* 70* \(r_{rup}\) C I50 1M A (N, R, S, HW, AS)
Pétursson and Vogfjörd (2009) SW Iceland 823 823 46 3.3 6.5 \(M_{Lw}\) 3 380 \(r_{epi}\) 1 V3 1 A
Rupakhety and Sigbjörnsson (2009) South Iceland+others 64+29 - 12 5.02 7.67 \(M_w\) 1 97 \(r_{jb}\) (\(r_{epi}\) for some) 2 L 1 S & O
Akkar and Bommer (2010) Europe & Middle East 532 - 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) 3 G 1M A (N, S, R)
Akkar and Çağnan (2010) Turkey 433 - 137 5.0 7.6 \(M_w\) 0* 200* \(r_{jb}\) C G 1M A (N, S, R)
Arroyo et al. (2010) Pacific coast of Mexico 418 - 40 5.0 8.0 \(M_w\) 20 400 \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6\)) 1 U O F
Bindi et al. (2010) Italy 561 561 107 4.0 6.9 \(M_w\) 1* 100* \(r_{jb}\), \(r_{epi}\) 3 L 1M A
Cua and Heaton (2010) Southern California+other shallow crustal 3588+1607 - 70 2 (5) 7.3 (7.9) \(M_w\) 0.8 (0.1)* 200 (200)* \(r_{jb}\) (\(r_{epi}\) for \(M<5\)) 2 G 1 A
Douglas and Halldórsson (2010) Europe & Middle East 595 - 135 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 L 1WM A (N, T, S, O, AS)
Faccioli, Bianchini, and Villani (2010) Worldwide shallow crustal 1499 - \(\leq\) 60 4.5 7.6 \(M_w\) 0.2* 200* \(r_{rup}\) (\(r_{hypo}\) for small) 4 & C G 1M A (N, R, S)
Graizer, Kalkan, and Lin (2010) & Graizer, Kalkan, and Lin (2013) Worldwide 13992 - 245 4.2 7.9 \(M_w\) 0.1* 500* \(r_{rup}\) C U O A (SN, R)
Hong and Goda (2010) California170 592 - 39 5.0 7.28 \(M_w\) 0.2* 100* \(r_{jb}\) C 1, 2 1M A
Iervolino et al. (2010) Italy 95 - 17 4.6 6.8 \(M_w\) 1.5, 1.5 179, 180 \(r_{jb}\) & \(r_{epi}\) 3 L 1 A
Jayaram and Baker (2010) Worldwide shallow crustal 1561 - 64 4.27 7.90 \(M_w\) 0.07 199.27 \(r_{rup}\) C I50 O A (N, R, S, HW)
Montalva (2010) & Rodriguez-Marek et al. (2011) Japan 3894 - 337 4 7.3 \(M_w\) (\(M_{\mathrm{JMA}}\)) 1 100 \(r_{rup}\) (\(r_{hypo}\) for small) C, I G O (1M) A
Ornthammarath et al. (2010), Ornthammarath (2010) & Ornthammarath et al. (2011) South Iceland 81 - 6 5.1 6.5 \(M_w\) 1* 80* \(r_{jb}\) (\(r_{epi}\) for \(M_w<6\)) 2 G 1M S
Sokolov et al. (2010) Taiwan 4656 - 66 4.6* 7.6* \(M_w\) (\(M_L\)) 5* 220* \(r_{hypo}\) 1 G 1, 2M A
Ulutaş and Özer (2010) Marmara region, Turkey 751 - 78 4.0 7.4 \(M_w\) (\(M_d\)) 0.1 196.8 \(r_{jb}\)171 (\(r_{epi}\) for small events) 1 L 1 SN
Alavi et al. (2011) Worldwide shallow crustal 2252 - U 5.1* 7.9* \(M_w\) 0.2* 350* \(r_{rup}\) C U O A (Rake)
Anderson and Uchiyama (2011) Guerrero, Mexico 293 293 27 5.05 7.96 \(M_w\) 10* 390* \(r_{rup}\) 1 M, V, V3 O A
Arroyo and Ordaz (2011) Worldwide shallow crustal 906 - 44 U U \(M_w\) U U \(r_{rup}\) 1 I50 1M A (R/RO/NO, S/N)
Beauducel et al. (2011) Guadeloupe (France) 1430 - 400* 1* 6.3 \(M_d\) for \(M<4.5\), \(M_w\) otherwise 2* 500* \(r_{hypo}\) 1 V 1W A
Bindi, Pacor, et al. (2011) Italy 769 - 99 4.1 6.9 \(M_w\) 0* 200* \(r_{jb}\) 5 G, V 1M A (S, R, N, U)
Emolo, Convertito, and Cantore (2011) Campania-Lucania, Italy 875 - 123 1.5 3.2 \(M_L\) 3 100* \(r_{hypo}\) 2 L 1 A
Gehl, Bonilla, and Douglas (2011) Japan 3874 - 335 4.0 7.3 \(M_w\) 0* 340* \(r_{rup}\) C G 1M, O A
Joshi, Kumar, and Sinvhal (2011) & Joshi et al. (2012) Kumaon Himalaya (India) 130 - 82 3.5 5.3 \(M_w\) 4 151 \(r_{hypo}\) 1 L 1 A
Kayabali and Beyaz (2011) Turkey 482172 - U 4 7.4 \(M_w\) (\(M_s\), \(M_L\), \(M_D\)) 0* 200* \(r_{epi}\) 1 B 1 A
Luzi et al. (2011) Italy U - U 4.0* 6.9* \(M_w\) 0* 300* \(r_{jb}\) (\(r_{epi}\) for \(M_w<5.5\)), \(r_{hypo}\) 5 G 1M A (S, N, R)
P.-S. Lin, Lee, et al. (2011) Taiwan + 8 foreign events 5181+87 - 44+8 3.5 (6.0) 7.6 (7.4) \(M_w\) (\(M_L\)) 1 240 \(r_{rup}\) (\(r_{hypo}\)) 2 G 1 A (HW)
Yilmaz (2011) SW Turkey 66 - 44 2.9 6.04 \(M_d\) 1.11 145 \(r_{epi}\) & \(r_{hypo}\) 2+C U O A
Yuen and Mu (2011) Tangshan, Xinjiang and Guangdong (China) 266 - 147 3.6* 7.2* U 4* 600* \(r_{hypo}\) 3 U O A
Chang, Jean, and Loh (2012) Taiwan 302 - 58 5.5 7.3 \(M_L\) 0* 170* \(r_{hypo}\) (\(r_{rup}\) for some) 1 G 1 A
Contreras and Boroschek (2012) Chile 117 - 13 6.5 8.8 \(M_w\) 30* 600* \(r_{rup}\), \(r_{hypo}\) for 4 events 2 G 1M F
Convertito et al. (2012) Geysers, N. California U173 - 220 1.0 3.5 \(M_w\) (\(M_D\)) 0.5 20 \(r_{hypo}\) 2 L 1M G
Cui et al. (2012) Sichuan-Yunnan (China) 962 - \(>\)21 4.5 6.5 \(M_s\) 0* 110* \(r_{epi}\) 2 G 1, 1W A
Di Alessandro et al. (2012) Italy 602 - 120 4.0 6.8 \(M_w\) 2* 200* \(r_{hypo}\) 7 G 1M A
Gómez-Bernal, Lecea, and Juárez-Garcı́a (2012) Mexico 607 607 17174 6.0 8.1 \(M_w\) 20* 600* \(r_{rup}\) 1 L 2 A (F, B, C)
Hamzehloo and Mahood (2012) East central Iran 258 - 109175 4.9* 7.4 \(M_w\) 1* 200* \(r_{jb}\) 1 G 2M A
Hung and Kiyomiya (2012) Japan & northern Vietnam and Yunnan (China) 447 + 22 - 7 3.9 (2.7) 6.9 (6.4) \(M_w\) (\(M_s\)) 3* 300* \(r_{jb}\) (\(r_{epi}\)) C U 1 S
Laouami and Slimani (2012) Algeria \(+\) Europe & USA 633 \(+\) 528 & 155176 - 82+17* & 7* 3 (5*) 6.8 (7.3*) \(M_s\) 6* (10*) 140* (150*) \(r_{hypo}\) 2 B 2 A
Mohammadnejad et al. (2012) Worldwide shallow crustal 2252 - U 5.2 7.9 \(M_w\) 0.07 366.03 \(r_{rup}\) C I50 O A (R, S, N)
Nabilah and Balendra (2012) Peninsular Malaysia & Singapore 35 - 9 7.2 9.1 \(M_w\) 508 1021 \(r_{epi}\) 1 L 2 F
Nguyen et al. (2012) Northern Vietnam 330 - 53 1.6 4.6 \(M_L\) 5* 500* \(r_{epi}\) 1 L3 1 A
Saffari et al. (2012) Iran 351 - 78 5.0 7.4 \(M_w\) 4 190* \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 3 U 2M A
Shah et al. (2012) N. Pakistan/N. India 128 - 25 4.1 7.6 U 8 265 \(r_{epi}\) 1 U 1 A
Abrahamson, Silva, and Kamai (2013, 2014) Worldwide shallow crustal 15750 - 326 3 7.9177 \(M_w\) 0 300 \(r_{rup}\) + others for HW C D50 1M A (S, N, R, HW)
Boore et al. (2013, 2014) Worldwide shallow crustal 15000* - 350* 3.0 7.9178 \(M_w\) 0 400 \(r_{jb}\) C D50 2M A (S, N, R, U)
Campbell and Bozorgnia (2013, 2014) Worldwide shallow crustal 15521 - 322 3.0179 7.9180 \(M_w\) 0* 300* \(r_{rup}\) C D50 1M A (S, R, N, HW)
Chiou and Youngs (2013, 2014) Worldwide shallow crustal 12244 - 300 3.1*181 7.9*182 \(M_w\) 0.3* 400*183 \(r_{rup}\) C D50 1M A (S, R, N, HW)
Douglas et al. (2013) Mainly geothermally-related 3968 - 535 1* 4* \(M_w\) (\(M_L\), \(M_D\)) 0* 20* \(r_{hypo}\) 1 G 1M G
Edwards and Douglas (2013) Cooper Basin (Australia) 2089 - 427 1.7 3.1 \(M_w\) 2.4 7.8 \(r_{hypo}\) 1 G 1M G
Idriss (2013, 2014) Worldwide shallow crustal 2353 - 151 4.5184 7.9185 \(M_w\) 0.2 175 \(r_{rup}\) C D50 1 A
Joshi, Kumar, Castanos, et al. (2013) Uttarakhand Himalaya (India) U, 29 - U, U 3.5, 3.5 5.3, 5.3 \(M_w\) 15, 20 100, 210 \(r_{hypo}\) 1 U 1 A
Laurendeau et al. (2013) Japan 2357 - 132 4.5 6.9 \(M_w\) 3* 300* \(r_{rup}\) (\(r_{hypo}\) for small) C G 1M A
Morikawa and Fujiwara (2013) Japan 21681 - 333 5.5 9.0 \(M_w\) 1* 200 \(r_{rup}\) C V 2W A (C, B, F)
Pacific Earthquake Engineering Research Center (2013) Worldwide shallow crustal - \(M_w\) C - 1M A (N, S, R, HW)
Segou and Voulgaris (2013) Europe & Middle East 327 - 164 4.1 6.6 \(M_w\) (\(m_b\)) 1* 150* \(r_{epi}\) 3 I50 O A (S, R, N)
Sharma et al. (2013) Geysers, N. California 5451 - 212 1.3 3.3 \(M_w\) (\(M_D\)) 0.5 20 \(r_{hypo}\) 3 L 1M G
Skarlatoudis et al. (2013) Hellenic Arc (Greece) 743 - 21 4.4 6.7 \(M_w\) (\(m_b\), \(M_L\)) 65* 850* \(r_{hypo}\) 3 D50 1M F, B
Villalobos-Escobar and Castro (2013) Medellı̀n and Aburrà Valley (Colombia) 596 - 17 2.8 6.5 \(M_L\) 10* 290 \(r_{epi}\) I U 1M A
Akkar, Sandıkkaya, and Bommer (2014a, 2014b) Europe & Middle East 1041 - 221 4.0 7.6186 \(M_w\) 0 200 \(r_{jb}\), \(r_{epi}\) & \(r_{hypo}\) C G 1M A (S, N, R)
Ansary (2014) Himalaya, India R: 229, S: 187 - 150* 2.5* 7.8 U 2* 2000* \(r_{hypo}\) 2 U 1 A
Bindi, Massa, et al. (2014b, 2014a) Europe & Middle East 1224, 2126 - 225, 365 4.0 7.6 \(M_w\) 0 300 \(r_{jb}\) (\(r_{epi}\) for \(M_w\leq 5\) and \(r_{epi}\geq 10\)) & \(r_{hypo}\) C, 4 G 1M A (S, N, R)
Derras, Cotton, and Bard (2014) Europe & Middle East 1088 - 320 3.6187 7.6188 \(M_w\) 1189 547190 \(r_{jb}\) C G O A
Ghofrani and Atkinson (2014) Japan \(>1000\) - 6 7.0 9.0 \(M_w\) 30* 1000* \(r_{rup}\) C G O F
Gianniotis, Kuehn, and Scherbaum (2014) Various Eurasian areas \(M_w\) \(r_{hypo}\) C G O A (NS, R)
Kurzon et al. (2014) San Jacinto fault zone (S. California, USA) 29474 - 809 1.5 5.9 \(M_L\) 0 150 \(r_{epi}\) 1 G 1M A
Luzi et al. (2014) Italy 829, 2805, 401 - 146, 658, 41 4, 4, 3.5 6.9, 6.9, 6.3 \(M_w\) (\(M_L\)) 0* 200* \(r_{jb}\) (\(r_{epi}\) for \(M<5.5\)) 5 G 1M A
Rodrı́guez-Pérez (2014) Cen. and S. Mexico 75 (F), 121 (B) - 8 F, 25 B 5.1 (F), 5.0 (B) 8.0 (F), 7.2 (B) \(M_w\) 50* (F), 70* (B) 580* (F), 540* (B) \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 1 G 1M F, B
Vacareanu et al. (2014) 9 events from Vrancea (Romania) + 17 foreign events 233+198 - 9+17 5.2 (5.6)191 7.4 (7.8)192 \(M_w\) 105193 650*194 \(r_{hypo}\) 1 G 1M B
Atkinson (2015) California U - U 3* 6* \(M_w\) 2* 40 \(r_{hypo}\) 1 G 1M A
Breska, Perus, and Stankovski (2015) Worldwide 3550 for \(r_{jb}\) & 3083 for \(r_{rup}\) - 173 4.2 7.9 \(M_w\) 0 200* \(r_{jb}\) & \(r_{rup}\) C G 1 A (R, N, S)
C. Cauzzi, Faccioli, Vanini, et al. (2015) Worldwide shallow active crustal 1880 - 98 4.5 7.9 \(M_w\) 0* 150* \(r_{rup}\) (\(r_{hypo}\) for \(M_w\leq 5.7\)) C G 2M A (S, N, R)
Emolo et al. (2015) South Korea 11129 - 222 2.0 4.9 \(M_L\) 1.4 600* \(r_{epi}\) I L 1M A
Graizer and Kalkan (2015) & Graizer and Kalkan (2016) Worldwide shallow crustal 2583 - 47 4.9195 7.9196 \(M_w\) 0.2 250 \(r_{rup}\) C U O A (R,SN)
Haendel et al. (2015) Northern Chile 1094 - 138 5* 8.1 \(M_w\) 40* 300* \(r_{rup}\) 2 G 1M B, F
Jaimes, Ramirez-Gaytán, and Reinoso (2015) Ciudad Universitaria, Mexico City197 22 - 22 5.2 7.4 \(M_w\) 103 464 \(r_{rup}\) for \(M_w >6.5\), \(r_{hypo}\) for \(M_w\leq 6.5\) 1 G 1B B
Kale et al. (2015) Turkey & Iran 1198 - 313 4 7.6198 \(M_w\) 0 200 \(r_{jb}\) C G 1MW A (S, N, R)
Kuehn and Scherbaum (2015) Europe & Middle East 835 - 279 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\) C G O A (R, N, S)
Pacific Earthquake Engineering Research Center (2015) — Al Noman and Cramer Cen. and E. N. America + foreign 6061199 - 78200 2.5 7.6201 \(M_w\) 1* 2000* \(r_{rup}\) C D50 2M A (R, S, U)
Pacific Earthquake Engineering Research Center (2015) — Graizer & Graizer (2016) Cen. and E. USA 5026 - 48 3.75202 6.8203 \(M_w\) 4204 1000* \(r_{rup}\) C D50 O A
Vacareanu, Radulian, et al. (2015) Vrancea, Romania + foreign intermediate-depth 344+360 - 9+29 5.2 (5.1) 7.4 (8.0) \(M_w\) 2 (\(r_{epi}\)) 399 (\(r_{epi}\)) \(r_{hypo}\) 3 G 1M A
Vuorinen, Tiira, and Lund (2015) Fennoscandian shield U - 2239 U U U U U U U U 1 A
Wan Ahmad et al. (2015) Malaysia 130 - 10 3.5 6.7 \(M_w\) U U \(r_{hypo}\) 1 M 1 S
Zhao et al. (2015) Japan + some overseas 16362 - 335 + 62 4.9* 9.1* \(M_w\) 0* 300* \(r_{rup}\) if available, \(r_{hypo}\) otherwise 4 + C G 1M A (B, F, R, N, S)
Abrahamson, Gregor, and Addo (2016) & BC Hydro (2012) Worldwide subduction 2590 for B, 953 for F - 63 for B, 43 for F 5.0 for B, 6.0 for F 7.9 for B, 8.4 for F \(M_w\) 12* 300* \(r_{rup}\) (\(r_{hypo}\)) for F, \(r_{hypo}\) for B C G 1M B, F
Bozorgnia and Campbell (2016b) Worldwide shallow crustal - 15161 321 3.0205 7.9206 \(M_w\) 0* 500*207 \(r_{rup}\) C - 1M A (R, S, N)
Kaveh, Bakhshpoori, and Hamzeh-Ziabari (2016) Worldwide shallow crustal 2252 - U 5.2 7.9 \(M_w\) 0.07 360 \(r_{rup}\) C U O A
S. R. Kotha, Bindi, and Cotton (2016a, 2016b) Europe & Middle East 1251 - U 4 7.6 \(M_w\) 0* 300*208 \(r_{jb}\) (\(r_{epi}\) for some \(M_w\leq 5\)) C G O A
Kuehn and Scherbaum (2016) Europe & Middle East 1261 - 362 4.1 7.6 \(M_w\) 0 200 \(r_{jb}\) C G O A (R, N, S)
Landwehr et al. (2016) California & Nevada 10692 - 221 3.0* 7.3* \(M_w\) 1* 300* \(r_{jb}\) C U209 O A (S, N, R)
Lanzano et al. (2016) Po Plain & NE Italy 2489 - 94 4.0 6.4 \(M_w\) 0* 200* \(r_{jb}\) 5 G 1M A (R, N, U)
Mu and Yuen (2016) Tangshan, China 132 - 72 4.0* 7.8* \(M_w\) 2* 500* \(r_{hypo}\) 1 U O A
Noor et al. (2016) & Nazir et al. (2016) Malaysia 130 - 11 3.53 8.6 \(M_w\) 204 1720 \(r_{hypo}\) 1 M 1 S
Sedaghati and Pezeshk (2016) Europe & Middle East 350 - 85 5.0 7.6 \(M_w\) 1* 100* \(r_{jb}\) 4 G 1, 1W, 1M, 2, 2M, 2O and O A
Shoushtari, Adnan, and Zare (2016) Malaysia, Japan and Iran 531 - 13 5.0 7.7 \(M_w\) 120* 1400* \(r_{hypo}\) 4 G 1 B
Stewart et al. (2016) Worldwide shallow crustal - 17089 U 3 7.9210 \(M_w\) 0 300 \(r_{jb}\) C - 2M A (R, S, N, U)
Sung and Lee (2016) Taiwan 19887 - 150 4.01 7.62 \(M_w\) (\(M_L\)) 0.32 291.59 \(r_{hypo}\), \(r_{rup}\) for Chi-Chi C U 1M, O A (S, N, R)
Tusa and Langer (2016) Mount Etna, Italy 1158 (shallow), 1957 (deep) 1158 (shallow), 1957 (deep) 38 (shallow), 53 (deep) 3.0 4.3 (shallow), 4.8 (deep) \(M_L\) 0.5 100 \(r_{epi}\) 3 G 1 V
Wang et al. (2016) Offshore NE Taiwan 832 - 13 4.0 5.9 \(M_w\) 20* 300* \(r_{hypo}\) C G 1 N
J. X. Zhao, Jiang, et al. (2016) Japan 4555\(+\)155 - 125\(+\)11 5.0* 7.92 (8.25) \(M_w\) 25* 300* \(r_{rup}\), \(r_{hypo}\) for most 4 G 1M B
J. X. Zhao, Liang, et al. (2016) Japan 3111\(+\)463 - 76 5.0* 9.0 \(M_w\) 20* 300* \(r_{rup}\), \(r_{hypo}\) for most 4 G 1M F
J. X. Zhao, Zhou, et al. (2016) Japan + some foreign 5957 - 117 4.9 7.2* \(M_w\) 0* 280* \(r_{rup}\), \(r_{hypo}\) for most 4 G 1M C (N), UM (R, NS)
Ameri et al. (2017) Europe & Middle East 2355 - 384 3 7.6 \(M_w\) 0* 200* \(r_{epi}\), \(r_{jb}\) 4 G 1M A (N, R, S)
Baltay, Hanks, and Abrahamson (2017) San Jacinto fault (USA) 14840 - 3200 1.15 3 \(M_w\) (\(M_L\)) 0* 20* \(r_{hypo}\) C G 1M A
Bindi et al. (2017) Worldwide shallow crustal 4692 - 242 3* 7.9* \(M_w\) 4* 300* \(r_{hypo}\), \(r_{jb}\) C G 1M A
Çağnan et al. (2017a, 2017b) Europe & Middle East - 1041 221 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\) C V 1M A (S, N, R)
Derras, Bard, and Cotton (2017) Japan 977 - 214 3.7 6.9 \(M_w\) 3.65 440.63 \(r_{jb}\) C \(\times\) C G O A
Garcı́a-Soto and Jaimes (2017) Mexico (Pacific coast) 418 418 40 5.0 8.0 \(M_w\) 17 400 \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 V 1M F
Gülerce et al. (2017) Worldwide shallow crustal - 15597 326 3 7.9211 \(M_w\) 0 300 \(r_{rup}\) + others for HW C V 1M A (S, N, R, HW)
Idini et al. (2017) Chile 114 for B, 369 for F - 38 for B, 65 for F 5.5 7.8 for B, 8.8 for F212 \(M_w\) 61 for B, 31 for F 386 for B, 391 for F \(r_{hypo}\) (\(r_{rup}\) for F and \(M_w\geq 7.7\)) C U 2M B,F
Institute of Seismology at the University of Helsinki (2017) cited by Ader et al. (2019) Finland U - U -0.9 4.1 \(M_{L}\) 1.5 78 \(r_{hypo}\) U U 1 A
Kumar et al. (2017) NE India 216 - 24 4.0 6.8 U 25* 950* \(r_{hypo}\) 1 U 2 A
G. A. Montalva, Bastı́as, and Rodriguez-Marek (2017b, 2017a, 2017c) Chile 2461 for F, 1313 for S - 281 for F, 192 for B 4.5* 8.8 for F, 7.8* for B \(M_w\) (\(M_L\)) 25* for F, 60* for B 1000* for F, 500* for B \(r_{rup}\) for F, \(r_{hypo}\) for B C G 1M F, B
Liew et al. (2017) Malaysia 111, 65, 82 - 10, 5, 7 U, U, U 7.0*, 6.0*, U \(M_w\) and \(m_b\) U U \(r_{epi}\), \(r_{epi}\), \(r_{hypo}\) and \(r_{epi}\) 1 V213 1 F, B, C
Oth, Miyake, and Bindi (2017) Japan 118102 - 1905 2.7 7.2 \(M_w\) 0.8* 250 \(r_{hypo}\) (\(r_{rup}\) for \(M_w\geq 6\)) 1 G 1M A
Peruzza et al. (2017) Mount Etna, Italy 1158 - 38 3.0 4.3 \(M_L\) 0.5 100 \(r_{hypo}\) 3 G 1 V
Sedaghati and Pezeshk (2017) Iran 688 688 152 4.7 7.4 \(M_w\) 1* 250* \(r_{jb}\) C 1M G A
Shahidzadeh and Yazdani (2017) Iran 289 - 136 5.0* 7.4* \(M_w\) 0* 190* \(r_{jb}\), \(r_{epi}\) for some 3 L O A (S, R, N)
Soghrat and Ziyaeifar (2017) N Iran 325 325 55 4.1 7.3 \(M_w\) (U) 5.3 303.1 \(r_{jb}\), \(r_{epi}\) for some 4, C G 1M A (S, R, U)
Zuccolo, Bozzoni, and Lai (2017) Southwest Italy 2270 - 319 1.5 4.2 \(M_L\) 3 100* \(r_{hypo}\) 1 B 1W A
Ameur, Derras, and Zendagui (2018) Worldwide shallow crustal 2335 - 137 3.2214 7.9215 \(M_w\) 0.01216 358217 \(r_{jb}\) C G O A
Bajaj and Anbazhagan (2018) Himalaya 512 - 66 4.0 7.8 \(M_w\) 5* 500* \(r_{hypo}\) 1 U 1 A
Chousianitis et al. (2018) Greece 652 - 72 4.0* 6.8 \(M_w\) 0.3* 200* \(r_{epi}\) 2 G 2M A (R/S, N)
M. D’Amico et al. (2018) S Calabria & Sicily (S Italy) 840 - 48 4.0 6.0 \(M_w\) (\(M_L\)) 2* 200* \(r_{jb}\) (\(r_{epi}\) for most) 4 G 1M A
Erken, Nomaler, and Gündüz (2018) NW Turkey + foreign 369 + 33 - 19 + 7 4.1 + 6.6218 7.4 + 7.6219 \(M_w\) 1 344220 \(r_{jb}\) 2 U 1 A
Felicetta et al. (2018) Italy 769 - 99 4.1 6.9 \(M_w\) 0* 200* \(r_{jb}\) 5, 6 G 1M A (S, R, N, U)
Javan-Emrooz, Eskandari-Ghadi, and Mirzaei (2018) N Iran, E Turkey, Armenia & Georgia 463 463 107 4.5 7.4 \(M_w\) (\(m_b\)) 2 100 \(r_{epi}\) 2 V O A (R, S)
Ktenidou et al. (2018) Euroseistest (N Greece) 691 - 74 2.0 5.6 \(M_L\) 5 220 \(r_{rup}\) 1, 2, C, I D50 1M A
Laouami, Slimani, and Larbes (2018b, 2018a) Algeria + Europe + W. USA 556+494+158 - 82 + 58 + 8 3.0 + 5.3 + 5.9 6.8 + 7.6 + 7.2 \(M_w\) (\(M_s\)) 6* 230* \(r_{hypo}\) 3 B 2 A
Mahani and Kao (2018) Graham and Septimus areas (BC, Canada) U, U - 129, 90 1.5, 1.5 3.8, 3.0 \(M_L\) 2.3, 1.6 19, 42 \(r_{hypo}\) 1 G 1M W
Rahpeyma et al. (2018) Hveragerdi (S Iceland) 4620 - 610 0.42 4.75 \(M_L\) 1.6 18* \(r_{hypo}\) I G O A
Sahakian et al. (2018) Anza, S California \(>\)120 000 - \(>\)10 000 0.5 4.5 \(M_w\) 0* 180 \(r_{hypo}\) C, I G 1M A
Sharma and Convertito (2018) The Geysers, USA 261711 - 10974 0.7 3.3 \(M_w\) (\(M_D\)) 0.1 73 \(r_{hypo}\) I L 1M G
Shoushtari, Adnan, and Zare (2018) Japan + Malay Peninsula 651 + 77 - 11 + 14 5.0 + 6.7 9.1 + 9.0 \(M_w\) 120* + 500* 1300* + 1000* \(r_{hypo}\) 4 G 1 F
Wen et al. (2018) Sichuan region (China) 1644 - 186 4.0 6.7 \(M_s\) 2 200 \(r_{jb}\) C D50 1M A
Zafarani et al. (2018) Iran 1551 - 200 4.0 7.3 \(M_w\) (\(M_L\)) 0.6* 200* \(r_{jb}\) (\(r_{epi}\)) 4 G 1M A (R, S, U)
Darzi et al. (2019) Iran 1350 - 370 4.5 7.4 \(M_w\) (\(M_s\), \(m_b\)) 1* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) & \(r_{rup}\) 3 G 2M A (S, R, U)
Farajpour, Pezeshk, and Zare (2019) Iran 1356221 - 208 4.8 7.5 \(M_w\) 1.5* 350* \(r_{rup}\) C G 1M A (R, S, N)
Huang and Galasso (2019) Italy 7843 - 233 4.0 6.9 \(M_w\) 1* 250* \(r_{jb}\) (\(r_epi\)) 3 D50 O A (R, S, N)
Konovalov et al. (2019) Sakhalin (Russia) 115 115 15 4.4 6.1 \(M_w\) 15 650 \(r_{rup}\) 1 L3 1W A
Lanzano, Luzi, Pacor, Felicetta, et al. (2019; Lanzano, Luzi, Pacor, Puglia, et al. 2019) Italy + 12 foreign events 4965 + 823222 - 144 + 12 3.5 + 6.07 6.87 + 8.0 \(M_w\) 0* 200* \(r_{jb}\) (\(r_{epi}\) for \(M<5.5\)), \(r_{rup}\) (\(r_{hypo}\) for \(M<5.5\)) C D50 1M A (N, R, S)
Laouami (2019) Algeria + Europe + W. USA - 257 + 247 + 79 U 3.0 7.4 \(M_w\) (\(M_s\)) 5 150 \(r_{hypo}\) 3 - 2 A
Podili and Raghukanth (2019) Japan 96880 - 1340 5.0 9.0 \(M_w\) 5 350 \(r_{rup}\) (\(r_{hypo}\) for some) C A 2 A (S, R, N, U, B, C)
Stafford (2019) Worldwide shallow crustal 924–8548 - 103–384 3* 7.9* \(M_w\) 0* 200* \(r_{rup}\) C D50 O A (S, N, R)
Sung and Lee (2019) Taiwan 20006 - 497 4.01 7.62 \(M_w\) (\(M_L\)) 0.63 200 \(r_{rup}\) (\(r_{hypo}\) for \(M_w<4.8\)) C, I G 1M A (S, N, R)
Zolfaghari and Darzi (2019b) Iran - 1350 370 4.5 7.4 \(M_w\) (\(M_s\), \(m_b\)) 1* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) & \(r_{rup}\) 3 - 2M A (S, R, U)
Chao et al. (2020) Taiwan 40892 - 316 3.5 7.6223 \(M_w\) 0.07 437.10 \(r_{rup}\) C D50 O A (N, S, R, F, B, AS)
Cremen, Werner, and Baptie (2020) Lancashire + N. Nottinghamshire (UK) 195+192 - 29+48 (0.1*) (2.9*) \(M_w\) (\(M_L\)) 1.5* 7* \(r_{hypo}\) 1 G O E + M
Hu, Tan, and Zhao (2020) Sagami Bay, Japan 738 (offshore)224, 3775 (onshore) 738 (offshore), 3775 (onshore) 233, 223 (onshore) 4.0 6.8 \(M_w\) 5* 300* \(r_{hypo}\) I, 4 D50 1M A (C, F, B)
Jaimes and Garcı́a-Soto (2020) Mexico 366 366 23 5.2 8.2 \(M_w\) 22 400 \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 G225 1M B
Kotha et al. (2020) Europe & Mediterranean 18222 - 927 3.0 7.4 \(M_w\) 0 545 \(r_{jb}\) (\(r_{epi}\)) I D50 O A
Kowsari et al. (2020) South Iceland 83 - 6 5.1 6.5 \(M_w\) 0* 80* \(r_{jb}\) 2 D50 O S
Kuehn et al. (2020) Separate models for Taiwan & Iran 13236 & 2775 - 108 & 480 4* & 3 7.6* & 7.37 \(M_w\) 1* & 2.5 300* & 300 \(r_{jb}\) & \(r_{hypo}\) C & 1 D50 1M, O A
Lanzano and Luzi (2020) Volcanic areas, Italy 615 - 41 3.0 4.9 \(M_w\) (\(M_L\)) 2* 200* \(r_{hypo}\) 3 G 1M V
Li et al. (2020) Sichuan-Yunnan (China) + global 250 + 276 - 7 + 22 6.0 + 6.1 7.9 + 7.68 \(M_w\) 0* 200* \(r_{rup}\) C D50 1M A
Phung, Loh, Chao, and Abrahamson (2020) Taiwan + Japan 3314 + 3376 - 51 + 25 4.5 + 6.5 7.1 + 9.1 \(M_w\) (\(M_L\)) 1 + 26 280 + 345 \(r_{rup}\) C D50 O A (B, F)
Phung, Loh, Chao, Chiou, et al. (2020) Taiwan + other shallow crustal 11375 + 2040 - 157 + 30 3.5 + 6.46 7.65 + 7.9 \(M_w\) (\(M_L\)) 0.1* 200* \(r_{rup}\) C D50 O A (N, S, R, HW)
Ramkrishnan, Sreevalsa, and Sitharam (2020) NE India 204 - 24 4.2 6.9 \(M_w\) 42 640 \(r_{hypo}\) 1 L 2M A
Tusa, Langer, and Azzaro (2020) Mt Etna, Italy 1600 1600 49 3.0 4.8 \(M_L\) 0.5 100 \(r_{hypo}\) 3 G 1M V
Abdelfattah et al. (2021) Jazan (Saudi Arabia) 638 - 72 2.0 5.1 \(M_L\) 4 200* \(r_{hypo}\) 1 A 1 A
Boore et al. (2021) Greece 1500* - 150* 4.0* 7.0* \(M_w\) 0.1* 300* \(r_{jb}\) C D50 O A (S, R, N)
Gao, Chan, and Lee (2021) S. Taiwan 338 - 61 4.2 7.6 \(M_w\) (\(M_L\)) 3.6 300 \(r_{rup}\), \(r_{hypo}\) for some events 1 D50 1M A
Kumar et al. (2021) Uttarakhand, India 116 - 9 5.0 6.8 \(M_w\) 10* 430* \(r_{hypo}\) 1 L 2W A
Ramkrishnan, Sreevalsa, and Sitharam (2021) N. and Cen. Himalaya 278 - 33 4.1 7.8 \(M_w\) 16 1560 \(r_{hypo}\) 1 U O A

Summary of published GMPEs for spectral ordinates

Johnson (1973)

McGuire (1974) & McGuire (1977)

Kobayashi and Nagahashi (1977)

Trifunac (1977) & Trifunac and Anderson (1977)

Faccioli (1978)

R. K. McGuire (1978b)

Trifunac (1978) & Trifunac and Anderson (1978a)

Trifunac and Anderson (1978b)

Cornell, Banon, and Shakal (1979)

Faccioli and Agalbato (1979)

Trifunac and Lee (1979)

Ohsaki et al. (1980)

Ohsaki, Watabe, and Tohdo (1980)

Trifunac (1980)

Devillers and Mohammadioun (1981)

Joyner and Boore (1982a)

Joyner and Boore (1982b)

Kobayashi and Midorikawa (1982)

Joyner and Fumal (1984), Joyner and Fumal (1985) & Joyner and Boore (1988)

Kawashima, Aizawa, and Takahashi (1984)

Kawashima, Aizawa, and Takahashi (1985)

Trifunac and Lee (1985b)

Kamiyama and Yanagisawa (1986)

C.B. Crouse (1987) reported in Joyner and Boore (1988)

Lee (1987) & Lee (1993)

K. Sadigh (1987) reported in Joyner and Boore (1988)

Annaka and Nozawa (1988)

Crouse, Vyas, and Schell (1988)

Petrovski and Marcellini (1988)

PML (1988)

Yokota, Shiba, and Okada (1988)

Youngs, Day, and Stevens (1988)

Kamiyama (1989)

Sewell (1989)

Trifunac and Lee (1989)

G. M. Atkinson (1990)

Campbell (1990)

Dahle, Bungum, and Kvamme (1990) & Dahle, Bugum, and Kvamme (1990)

Tamura, Sasaki, and Aizawa (1990)

Tsai, Brady, and Cluff (1990)

Crouse (1991)

Dahle, Bungum, and Kvamme (1991)

Geomatrix Consultants (1991), Sadigh et al. (1993) & Sadigh et al. (1997)

I.M. Idriss (1991) reported in Idriss (1993)

Loh et al. (1991)

Matuschka and Davis (1991)

Mohammadioun (1991)

Stamatovska and Petrovski (1991)

Benito et al. (1992)

Niazi and Bozorgnia (1992)

Silva and Abrahamson (1992)

Tento, Franceschina, and Marcellini (1992)

Abrahamson and Silva (1993)

Boore, Joyner, and Fumal (1993) & Boore, Joyner, and Fumal (1997)

Caillot and Bard (1993)

Campbell (1993)

Electric Power Research Institute (1993a)

Sun and Peng (1993)

Boore, Joyner, and Fumal (1994a), Boore, Joyner, and Fumal (1997) & Boore (2005)

Climent et al. (1994)

Fukushima, Gariel, and Tanaka (1994) & Fukushima, Gariel, and Tanaka (1995)

Lawson and Krawinkler (1994)

Lee and Manić (1994) & V. W. Lee (1995)

Mohammadioun (1994)

G. Mohammadioun (1994)

Musson, Marrow, and Winter (1994)

Theodulidis and Papazachos (1994)

Dahle et al. (1995)

V. W. Lee and Trifunac (1995)

N. N. Ambraseys, Simpson, and Bommer (1996) & Simpson (1996)

N. N. Ambraseys and Simpson (1996) & Simpson (1996)

Bommer et al. (1996)

Crouse and McGuire (1996)

Free (1996) & Free, Ambraseys, and Sarma (1998)

Molas and Yamazaki (1996)

Ohno et al. (1996)

Sabetta and Pugliese (1996)

Ground-motion model used is: \[\log_{10} Y = a+bM- \log_{10} \sqrt{d^2+h^2}+e_1 S_1 +e_2 S_2\]

Response parameter, \(Y\), is pseudo-velocity for \(5\%\) damping

Use data from Sabetta and Pugliese (1987).

Remove anelastic decay term because it was not significant at \(\alpha=0.1\) and sometimes it was positive. Originally geometrical decay coefficient \(c\) was allowed to vary but find it is close to \(-1\) so constrain.

Use three site categories:

A

Shallow: depth \(H\leq 20\,\mathrm{m}\) alluvium \(400\leq V_s \leq 800\,\mathrm{m/s}\).

Deep: depth \(H>20\,\mathrm{m}\) alluvium \(400\leq V_s \leq 800\,\mathrm{m/s}\).

Stiff: \(V_s >800\,\mathrm{m/s}\).

Accelerograms digitised at \(400\) samples/sec. Bandpass frequencies chosen by an analysis of signal and fixed trace Fourier spectra. \(f_{\mathrm{min}}\) between \(0.2\) and \(0.7\,\mathrm{Hz}\) most about \(0.3\,\mathrm{Hz}\) and \(f_{\mathrm{max}}\) between \(20\) and \(35\,\mathrm{Hz}\) most about \(25\,\mathrm{Hz}\). Instrument correction applied.

Use one-stage method although two-stage method yields similar results.

Also present smoothed coefficients.

Spudich et al. (1996) & Spudich et al. (1997)

Abrahamson and Silva (1997)

G. M. Atkinson (1997)

Campbell (1997), Campbell (2000) & Campbell (2001)

Schmidt, Dahle, and Bungum (1997)

Youngs et al. (1997)

Bommer et al. (1998)

Perea and Sordo (1998)

Reyes (1998)

Shabestari and Yamazaki (1998)

Chapman (1999)

Spudich et al. (1999) & Spudich and Boore (2005)

N. Ambraseys and Douglas (2000), Douglas (2001b) & Ambraseys and Douglas (2003)

Bozorgnia, Campbell, and Niazi (2000)

Campbell and Bozorgnia (2000)

Chou and Uang (2000)

Field (2000)

Kawano et al. (2000)

Kobayashi et al. (2000)

McVerry et al. (2000)

Monguilner et al. (2000)

Paciello, Rinaldis, and Romeo (2000)

Shabestari and Yamazaki (2000)

P. Smit et al. (2000)

Takahashi et al. (2000)

Lussou et al. (2001)

Das, Gupta, and Gupta (2002, 2006)

Gülkan and Kalkan (2002)

Khademi (2002)

Manic (2002)

Schwarz et al. (2002)

Zonno and Montaldo (2002)

Alarcón (2003)

Atkinson and Boore (2003)

Berge-Thierry et al. (2003)

Bommer, Douglas, and Strasser (2003)

Campbell and Bozorgnia (2003d, 2003a, 2003b, 2003c) & Bozorgnia and Campbell (2004b)

Fukushima et al. (2003)

Kalkan and Gülkan (2004a)

Kalkan and Gülkan (2004b) and Kalkan and Gülkan (2005)

Matsumoto et al. (2004)

Özbey et al. (2004)

Pankow and Pechmann (2004) and Pankow and Pechmann (2006)

Sunuwar, Cuadra, and Karkee (2004)

Takahashi et al. (2004)

Wang et al. (2004)

Y. Yu and Hu (2004)

Y.-X. Yu and Wang (2004)

N. N. Ambraseys et al. (2005a)

N. N. Ambraseys et al. (2005b)

Bragato and Slejko (2005)

Garcı́a et al. (2005)

McGarr and Fletcher (2005)

Pousse et al. (2005)

Takahashi et al. (2005), Zhao et al. (2006) and Fukushima et al. (2006)

Wald et al. (2005)

G. M. Atkinson (2006)

Beyer and Bommer (2006)

Bindi et al. (2006)

Campbell and Bozorgnia (2006a) and Campbell and Bozorgnia (2006b)

Hernandez et al. (2006)

Jaimes, Reinoso, and Ordaz (2006)

Kanno et al. (2006)

Kataoka et al. (2006)

McVerry et al. (2006)

Pousse et al. (2006)

Sakamoto, Uchiyama, and Midorikawa (2006)

Sharma and Bungum (2006)

Sigbjörnsson and Elnashai (2006)

Tapia (2006) & Tapia, Susagna, and Goula (2007)

Uchiyama and Midorikawa (2006)

Zare and Sabzali (2006)

Akkar and Bommer (2007a)

Bindi et al. (2007)

Bommer et al. (2007)

Boore and Atkinson (2007) & Boore and Atkinson (2008)

Campbell and Bozorgnia (2007), Campbell and Bozorgnia (2008b) & Campbell and Bozorgnia (2008a)

Danciu and Tselentis (2007a), Danciu and Tselentis (2007b) & Danciu (2006)

Y. Fukushima, Bonilla, et al. (2007b) & Y. Fukushima, Bonilla, et al. (2007a)

Hong and Goda (2007) & Goda and Hong (2008)

Massa et al. (2007)

Tejeda-Jácome and Chávez-Garcı́a (2007)

Abrahamson and Silva (2008) & Abrahamson and Silva (2009)

Aghabarati and Tehranizadeh (2008)

C. Cauzzi and Faccioli (2008), C. V. Cauzzi (2008) & C. Cauzzi, Faccioli, Paolucci, et al. (2008)

Y. Chen and Yu (2008b)

Y. Chen and Yu (2008a)

B. S.-J. Chiou and Youngs (2008)

Cotton et al. (2008)

Dhakal, Takai, and Sasatani (2008)

Hancock, Bommer, and Stafford (2008) & Hancock (2006)

Idriss (2008)

Kataoka et al. (2008)

Lin and Lee (2008)

Massa et al. (2008)

Morasca et al. (2008)

Yuzawa and Kudo (2008)

Aghabarati and Tehranizadeh (2009)

Akyol and Karagöz (2009)

Bindi, Luzi, and Pacor (2009)

Bindi, Luzi, et al. (2009)

Bragato (2009)

Ghasemi et al. (2009)

Goda and Atkinson (2009)

H. P. Hong, Pozos-Estrada, and Gomez (2009)

H. P. Hong, Zhang, and Goda (2009)

Kuehn, Scherbaum, and Riggelsen (2009)

Moss (2009) & Moss (2011)

Rupakhety and Sigbjörnsson (2009)

Sharma et al. (2009)

Akkar and Bommer (2010)

Akkar and Çağnan (2010)

Amiri et al. (2009)

Arroyo et al. (2010)

Bindi et al. (2010)

Bozorgnia, Hachem, and Campbell (2010)

Das and Gupta (2010)

Douglas and Halldórsson (2010)

Faccioli, Bianchini, and Villani (2010)

Hong and Goda (2010)

Jayaram and Baker (2010)

Montalva (2010) & Rodriguez-Marek et al. (2011)

Ornthammarath et al. (2010), Ornthammarath (2010) & Ornthammarath et al. (2011)

Rodriguez-Marek and Montalva (2010)

Sadeghi, Shooshtari, and Jaladat (2010)

Saffari et al. (2010)

Anderson and Uchiyama (2011)

Arroyo and Ordaz (2011)

Bindi, Pacor, et al. (2011)

Buratti, Stafford, and Bommer (2011)

Cauzzi et al. (2011)

Chopra and Choudhury (2011)

Gehl, Bonilla, and Douglas (2011)

P.-S. Lin, Lee, et al. (2011)

Chang, Jean, and Loh (2012)

Contreras and Boroschek (2012)

Cui et al. (2012)

Di Alessandro et al. (2012)

Hamzehloo and Mahood (2012)

Mohammadnejad et al. (2012)

Saffari et al. (2012)

Abrahamson, Silva, and Kamai (2013, 2014)

Boore et al. (2013, 2014)

Campbell and Bozorgnia (2013, 2014)

Chiou and Youngs (2013, 2014)

Douglas et al. (2013)

Idriss (2013, 2014)

Laurendeau et al. (2013)

Morikawa and Fujiwara (2013)

Pacific Earthquake Engineering Research Center (2013)

Segou and Voulgaris (2013)

Sharma et al. (2013)

Skarlatoudis et al. (2013)

Akkar, Sandıkkaya, and Bommer (2014a, 2014b)

Ansary (2014)

Bindi, Massa, et al. (2014b, 2014a)

Derras, Cotton, and Bard (2014)

Ghofrani and Atkinson (2014)

Kurzon et al. (2014)

Luzi et al. (2014)

Rodrı́guez-Pérez (2014)

Stafford (2014)

Vacareanu et al. (2014)

Atkinson (2015)

C. Cauzzi, Faccioli, Vanini, et al. (2015)

Emolo et al. (2015)

Haendel et al. (2015)

Jaimes, Ramirez-Gaytán, and Reinoso (2015)

Kale et al. (2015)

Kuehn and Scherbaum (2015)

Pacific Earthquake Engineering Research Center (2015) — Al Noman and Cramer

Vacareanu, Radulian, et al. (2015)

Vuorinen, Tiira, and Lund (2015)

Zhao et al. (2015)

Abrahamson, Gregor, and Addo (2016) & BC Hydro (2012)

Bommer et al. (2016)

Bozorgnia and Campbell (2016b)

S. R. Kotha, Bindi, and Cotton (2016a, 2016b)

Landwehr et al. (2016)

Lanzano et al. (2016)

Sedaghati and Pezeshk (2016)

Shoushtari, Adnan, and Zare (2016)

Stewart et al. (2016)

Sung and Lee (2016)

Tusa and Langer (2016)

Wang et al. (2016)

J. X. Zhao, Jiang, et al. (2016)

J. X. Zhao, Liang, et al. (2016)

J. X. Zhao, Zhou, et al. (2016)

Ameri et al. (2017)

Bindi et al. (2017)

Çağnan et al. (2017a, 2017b)

Derras, Bard, and Cotton (2017)

Garcı́a-Soto and Jaimes (2017)

Gülerce et al. (2017)

Hassani et al. (2017)

Idini et al. (2017)

G. A. Montalva, Bastı́as, and Rodriguez-Marek (2017b, 2017a, 2017c)

Peruzza et al. (2017)

Sedaghati and Pezeshk (2017)

Shahidzadeh and Yazdani (2017)

Soghrat and Ziyaeifar (2017)

Zuccolo, Bozzoni, and Lai (2017)

Ameur, Derras, and Zendagui (2018)

M. D’Amico et al. (2018)

Felicetta et al. (2018)

Gupta and Trifunac (2018c)

S. R. Kotha, Cotton, and Bindi (2018a, 2018b)

Ktenidou et al. (2018)

Laouami, Slimani, and Larbes (2018b, 2018a)

Laurendeau et al. (2018)

Mahani and Kao (2018)

Sharma and Convertito (2018)

Shoushtari, Adnan, and Zare (2018)

Wen et al. (2018)

Zafarani et al. (2018)

Bindi et al. (2019)

Darzi et al. (2019)

Farajpour, Pezeshk, and Zare (2019)

Huang and Galasso (2019)

Lanzano, Luzi, Pacor, Felicetta, et al. (2019; Lanzano, Luzi, Pacor, Puglia, et al. 2019)

Laouami (2019)

Sung and Lee (2019)

Zolfaghari and Darzi (2019b)

Chao et al. (2020)

Cremen, Werner, and Baptie (2020)

Hu, Tan, and Zhao (2020)

Jaimes and Garcı́a-Soto (2020)

Kotha et al. (2020)

Kowsari et al. (2020)

Kuehn et al. (2020)

Lanzano and Luzi (2020)

Li et al. (2020)

Phung, Loh, Chao, and Abrahamson (2020)

Phung, Loh, Chao, Chiou, et al. (2020)

Tusa, Langer, and Azzaro (2020)

Boore et al. (2021)

C. Huang, Tarbali, and Galasso (2021)

Gao, Chan, and Lee (2021)

General characteristics of GMPEs for spectral ordinates

Table [tab:speccomp] gives the general characteristics of published attenuation relations for spectral ordinates. The columns are the same as in Table [tab:pga] with three extra columns:

  1. Number of periods for which attenuation equations are derived

  2. Minimum period for which attenuation equation is derived

  3. Maximum period for which attenuation equation is derived

continued
Reference Area H V E \(M_{\mathrm{min}}\) \(M_{\mathrm{max}}\) \(M\) scale \(r_{\mathrm{min}}\) \(r_{\mathrm{max}}\) \(r\) scale S \(T\)s \(T_{\mathrm{min}}\) \(T_{\mathrm{max}}\) C R M
Reference Area H V E \(M_{\mathrm{min}}\) \(M_{\mathrm{max}}\) \(M\) scale \(r_{\mathrm{min}}\) \(r_{\mathrm{max}}\) \(r\) scale S \(T\)s \(T_{\mathrm{min}}\) \(T_{\mathrm{max}}\) C R M
Johnson (1973) W. USA 41 - 23 5.3 7.7 \(m_b\) 6.3 149.8 \(r_{epi}\) 1 14 0.055 2.469 M 1 A
Kobayashi and Nagahashi (1977) Japan U - U 5.4* 7.9* U 60* 210* \(r_{hypo}\) I U 0.1 5 R239 O A
McGuire (1977) W. USA 34 - 22 5.3 7.6 \(M_L\) 14 125 \(r_{hypo}\) 1 16 0.1 8 B U A
Trifunac (1977) & Trifunac and Anderson (1977) W. USA 182 182 46 3.8 7.7 Mostly \(M_L\) 6240* 400241* \(r_{epi}\) 3 91 0.04 12 B O A
Faccioli (1978) W. USA, Japan, Papua New Guinea, Mexico & Greece 26242 - 11 5.3 7.8 U 15 342 \(r_{hypo}\) 1 15 0.1 4 B U A
R. K. McGuire (1978b) W. USA 70 - 17+* 4.5* 7.7 U243 11* 210* \(r_{hypo}\) 2 1 1 1 B U A
Trifunac (1978) & Trifunac and Anderson (1978a) W. USA 182 182 46 3.8 7.7 Mostly \(M_L\) 6244* 400245* \(r_{epi}\) 3 91 0.04 12 B O A
Trifunac and Anderson (1978b) W. USA 182 182 46 3.8 7.7 Mostly \(M_L\) 6246* 400247* \(r_{epi}\) 3 91 0.04 12 B O A
Cornell, Banon, and Shakal (1979) W. USA 70 - U U U \(M_L\) U U \(r_{hypo}\) 1 7 0.17 5 C U A
Faccioli and Agalbato (1979) Friuli, Italy 38 - 14 3.7 6.3 \(M_L\) 5 (\(r_{epi}\)) 190 (\(r_{epi}\)) \(r_{hypo}\) 2 1 1 1 B 1 A
Trifunac and Lee (1979) W. N. America U U U U U U U U \(r_{epi}\) 3 91 0.04 15 U U A
Ohsaki et al. (1980) Japan 95 - 29+ 3.9* 7.2* U 3* 500* \(r_{hypo}\) 2 86 0.02 5 U 1 A
Ohsaki, Watabe, and Tohdo (1980) Japan 75 - U 4 7.4 U 6 500 \(r_{hypo}\) 1 U 0.02 5 U 1 A
Trifunac (1980) W. USA U - U U U U U U \(r_{epi}\) C 91 0.04 7.5 U U A
Devillers and Mohammadioun (1981) W. USA 186 - U 3.3* 7.7* U \(\geq\) 10 250* \(r_{hypo}\) 1 46 0.04 10 U 1 A
Joyner and Boore (1982a) W. N. America 64 - 12 5.3* 7.7 \(M_w\) 0.6* 110* \(r_{jb}\) 2 12 0.1 4 L 2 A
Joyner and Boore (1982b) W. N. America 64 - 12 5.3* 7.7 \(M_w\) 0.6* 110* \(r_{jb}\) 2 12 0.1 4 L, R 2 A
Kobayashi and Midorikawa (1982) Japan 45 - U 5.1 7.5 U 50 280 \(r_{hypo}\) 1 U 0.1 5 U O A
Joyner and Fumal (1984), Joyner and Fumal (1985) & Joyner and Boore (1988) W. N. America U - U 5.0 7.7 \(M_w\)(\(M_L\)) U U \(r_{jb}\) C 12 0.1 4 L U A
Kawashima, Aizawa, and Takahashi (1984) Japan 197 - 90 5.0 U \(M_{\mathrm{JMA}}\) U U \(r_{epi}\) 3 10 0.1 3 R 1 A
Kawashima, Aizawa, and Takahashi (1985) Japan - 119 90* 5.0* 7.5* \(M_{\mathrm{JMA}}\) 5* 500* \(r_{epi}\) 3 10 0.1 3 - 1 A
Trifunac and Lee (1985b) W. N. America 438 438 104 U U U U U \(r_{hypo}\) 3, C 91 0.04 15 U U A
Kamiyama and Yanagisawa (1986) Japan 228 - 69 4.5 7.9 \(M_{\mathrm{JMA}}\) 3 323 \(r_{epi}\) I 45 0.1 10 U 1 A
C.B. Crouse (1987)248 S. California U - U U U \(M_s\) U U \(r_{rup}\) 1 10 0.05 6 B U A
Lee (1987) & Lee (1993) Mostly California 494 494 106 U U \(M_L\) for \(M\lesssim 6.5\), others for \(M>6.5\) U U \(r_{epi}\) 3 91 0.04 15 B U A
K. Sadigh (1987)249 W. USA + others U - U U U \(M_w\) U U \(r_{rup}\) 2 7 0.1 4 B U A (S, R)
Annaka and Nozawa (1988) Japan U - 45 U U U U U U 1 U 0.04* 4* U 1 A
Crouse, Vyas, and Schell (1988) N. Honshu 64 - U 5.1 8.2 \(M_w\), \(M_s\) & \(M_{\mathrm{JMA}}\) for \(<7.5\) 42 407 \(r_E\), \(r_{hypo}\) for \(M<7.5\) 1 10 0.1 4 B 1 A
Petrovski and Marcellini (1988) Europe 120 120 46 3 7 U 8 200 \(r_{hypo}\) 1 26 0.02 5 L 1 A
PML (1988)250 USA + Europe + others 162 124 30* 3.0* \(\geq\) 7.0 \(M_s\) 10* \(\geq\) 150 \(r_{hypo}\) 3 20 0.025 1 A
Yokota, Shiba, and Okada (1988) Tokyo 154 24 75 (U) 4.0 6.1 \(M_{\mathrm{JMA}}\) 59 (60) 206 (100) \(r_{hypo}\) 1 U 0.1 (0.05) 10 (5) U U A
Youngs, Day, and Stevens (1988) Worldwide subduction zones 20 + 197 + 389 - 16* (60) 5.6* (5) 8.1* (8.1, 8.2)251 \(M_w\) (\(M_s\), \(m_b\)) U (15*, 20*) U (450*, 450*) \(r_{rup}\), \(r_{hypo}\) for \(M_w\lesssim 7.5\) 1 15 0.07 4 G 1W A (B,F)
Kamiyama (1989) Japan 228 - U 4.1 7.9 \(M_{\mathrm{JMA}}\) 3 350 \(r_{epi}\) I U 0.05* 10* U 1 A
Sewell (1989) California + 7 other events 112 - 24 5.0 7.7\(M_w\) (\(M_L\), \(M_s\)) 0.6 211 \(r_{jb}\) (\(r_{epi}\) for some) 2 20 0.07 2 C 2 A
Trifunac and Lee (1989) Mostly California 438 438 104 U U U U U \(r_{epi}\) C 12 0.04 14 B U A
G. M. Atkinson (1990) E. N. America + 10 others 92+10252 - 8+3 3.60 (5.16) 6.00 (6.84) \(M_w\) 8 (8) 1215 (23) \(r_{hypo}\) 1 4 0.1 1 B 2 A
Campbell (1990) Unknown U - U U U \(M_L\) for \(M<6\), \(M_s\) for \(M\geq 6\) U U \(r_{seis}\) 1 15 0.04 4 U U A
Dahle, Bungum, and Kvamme (1990) & Dahle, Bugum, and Kvamme (1990) Worldwide intraplate regions 87 - 56 2.9 7.8 \(M_s\) (\(M_L\), \(m_b\), \(M_{CL}\) 6 1300 \(r_{hypo}\) 1 89 0.025 4 L 2 A
Tamura, Sasaki, and Aizawa (1990) Japan 97 - 7 7.1 7.9 \(M_{\mathrm{JMA}}\) U U \(r_{epi}\) 3 13 2 20 L 1, O A
Tsai, Brady, and Cluff (1990) Worldwide \(<\)88 - \(<\)51 4.9* 7.4 \(M_w\) 3* 150* \(r_{rup}\) 1 14 0.07 1 U M T (S,O)
Crouse (1991) Worldwide subduction zones 235 - U 5.1 8.2 \(M_w\) (\(M_s\), \(M_{\mathrm{JMA}}\)) \(>\)8 \(>\)469 \(r_E\), \(r_{hypo}\) for \(M<7.5\) 1 10 0.1 4 B 1 A
Dahle, Bungum, and Kvamme (1991) Intraplate (particularly Norway) 395+31 - 136+11 2.4*(4.1) 5.2*(6.9) \(M_s\) (\(M_L\),\(M_{CL}\)) 20* (9.7) 1200* (1300) \(r_{hypo}\) 1 4253 0.1 1 L O A
I.M. Idriss (1991)254 Unknown 572 - 30* 4.6 7.4 \(M_L\) for \(M<6\), \(M_s\) for \(M\geq 6\) 1 100 \(r_{rup}\), \(r_{hypo}\) for \(M<6\) 1 23 0.03 5 U U A
Loh et al. (1991) Taiwan 112 - 63 4.0 7.1 \(M_L\) 5.0 178.3 \(r_{hypo}\) 1 11 0.04 10 L U A
Matuschka and Davis (1991) New Zealand 80 80 30 U U U U U U 3 16 0.04 4 B U A
Mohammadioun (1991) Italy 144 - 46 3.0 6.5 U 6 186 \(r_{hypo}\), 1 eq. with \(r_{rup}\) 1 81 0.013 1.95 B U A
Stamatovska and Petrovski (1991) Mainly Italy and former Yugoslavia 489255 - 78 3* 8* \(M_L\) 10* 500* \(r_{hypo}\) 1 23 0.05 5 B 1 A
Niazi and Bozorgnia (1992) array, Taiwan 236 234 12 3.6 7.8 \(M_L\) (\(M_D\)) for \(M_L<6.6\), else \(M_s\) 3.1256 119.7 \(r_{hypo}\) 1 23 0.03 10 M 2W A
Benito et al. (1992) Campano Lucano 84 - U 4.7 6.5 \(M_L\) 3.4* 142* \(r_{hypo}\) 3 15 0.04 10 L 1 A
Silva and Abrahamson (1992) W. USA with 4 foreign U–136 - U–12 6.1 7.4 \(M_w\) 3* 100* \(r_{seis}\) 2 10 1 20 G 1M A (S,R)
Tento, Franceschina, and Marcellini (1992) Italy 137 - 40 4 6.6 \(M_L\) 3.2 170 \(r_{jb}\) for \(M_L \geq 5.7\), \(r_{epi}\) otherwise 1 12 0.04 2.75 L 2 A
Abrahamson and Silva (1993) W. USA with 4 foreign 22–201 - 1–18 6.0 7.4 \(M_w\) 0.6* 100* \(r_{rup}\) 2 10 1 20 G 1M A (S, R)
Boore, Joyner, and Fumal (1993) & Boore, Joyner, and Fumal (1997) W. N. America 112 - 14 5.30 7.70 \(M_w\) 0 109 \(r_{jb}\) 3 46 0.1 2 L, G 2M A
Caillot and Bard (1993) Italy 83 - \(\leq 40\) 3.2 6.8 \(M_s\) if \(M_L\) & \(M_s \geq 6.0\) else \(M_L\) 10 63 \(r_{hypo}\) 2 25 0.05 1.98 U 2, 1W A
Campbell (1993) Worldwide U - U U257 U \(M_L\) for \(M<6.0\) and \(M_s\) otherwise U U258 \(r_{seis}\) 2 15 0.04 4 M O A (T,S)
Sadigh et al. (1993) & Sadigh et al. (1997) California with 4 foreign 960+4 U 119+2 3.8 (6.8) 7.4 (7.4) \(M_w\) 0.1 (3) 305 (172)259 \(r_{rup}\) for some, \(r_{hypo}\) for small ones 2 21 0.05260 7.5261 G U A(R,S)
Electric Power Research Institute (1993a) Eastern North America 66 132 U 4* 6.8* \(M_w\), \(m_{Lg}\) 5* 1000* \(r_{hypo}\) (\(r_{rup}\) for largest) 3 10 0.03 1 G 1M A
Sun and Peng (1993) W. USA with 1 foreign 150+1 - 42+1 4.1 7.7 \(M_L\) for \(M<6\), else \(M_s\) 2* 150* \(r_{epi}\) C U 0.04 10 R 1 A
Boore, Joyner, and Fumal (1994a) & Boore, Joyner, and Fumal (1997) W. N. America 112 (70) - 14 (9) 5.30 7.70 (7.40) \(M_w\) 0 109 \(r_{jb}\) C 46 0.1 2 L, G 1M, 2M A (R,S)262
Climent et al. (1994) Central America & Mexico 280 U 72 U U U U U U U U 0.05* \(\geq\) 2 U U A
Fukushima, Gariel, and Tanaka (1994) & Fukushima, Gariel, and Tanaka (1995) 3 vertical arrays in Japan 285 284 42 5.0 7.7 \(M_{\mathrm{JMA}}\) 60* 400* \(r_{hypo}\) I U 0.05 2 B 1,2 A
Lawson and Krawinkler (1994) W. USA 250+ - 11 5.8 7.4 \(M_w\) U 100 \(r_{jb}\) 3 38 0.1 4 U 1M A
Lee and Manić (1994) & V. W. Lee (1995) Former Yugoslavia 313 313 183 3.75 7.0 U 4 250 \(r_{epi}\) 6 12 0.04 2 U 2R A
Mohammadioun (1994) California 108263 56 23 5.3 7.7 \(M_L\) 3 136 Often \(r_{rup}\), \(r_{hypo}\) in far field 1 96 0.013 5 B 1 A
G. Mohammadioun (1994) W. USA 530264 \(\approx 265\) U U U \(M_L\) 1 250 \(r_{rup}\), \(r_E\) if more appropriate, \(r_{hypo}\) in far field 1 96 0.013 5 B 1 A
Musson, Marrow, and Winter (1994) UK + 28* foreign 88*+28*265 - 15+16 3 (3.7) 4.1 (6.4) \(M_L\) 70* (\(>\)1.3) \(>\)477.4 (200*) \(r_{hypo}\) 1 4 0.1 1 U266 O A
Theodulidis and Papazachos (1994) Greece+16 foreign 105+16267 - 36+4 4.5 (7.2) 7.0 (7.5) \(M_s\), \(M_w\), \(M_{\mathrm{JMA}}\) 1 (48) 128 (236) \(r_{epi}\) 2 73 0.05 5 B O A
Dahle et al. (1995) Cen. America 280 - 72 3* 8* \(M_w\) (\(M_s\), \(m_b\), \(M_D\)) 6* 490* \(r_{hypo}\) 2 8 0.025 4 L 1B A
V. W. Lee and Trifunac (1995) W. N. America 1926 1926 297 1.7 7.7 Usually \(M_L\) for \(M\leq 6.5\) and \(M_s\) for \(M>6.5\) 2 200+ \(r_{hypo}\) 9, 3 \(\times\) C 91 0.04 15 U 1 A
N. N. Ambraseys, Simpson, and Bommer (1996) Europe & Mid. East 422 - 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M>6.0\), \(r_{epi}\) otherwise 3 46 0.1 2 L 2 A
N. N. Ambraseys and Simpson (1996) Europe & Mid. East - 417 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M>6.0\), \(r_{epi}\) otherwise 3 46 0.1 2 L 2 A
Bommer et al. (1996) El Salvador & Nicaragua 36 - 20 3.7 7.0 \(M_s\) 62 260 \(r_{hypo}\) 1 10 0.1 2 L U A
Crouse and McGuire (1996) Cen. & S. California 238 - 16 6.0 7.7 \(M_s\) 0.1 211 \(r_{rup}\) 4 14 0.04 14 G 1W R,S (R,S)
Free (1996) & Free, Ambraseys, and Sarma (1998) Stable continental regions 399–410 347–477 H: 137–138, V: 126–132 1.5 6.8 \(M_w\) 0 820 \(r_{jb}\) for some, \(r_{epi}\) for most 2 52 0.04 2 L 1 A
Molas and Yamazaki (1996) Japan 2166 - 387 4.1 7.8 \(M_{\mathrm{JMA}}\) 8* 1000* \(r_{rup}\) for 2 earthquakes, \(r_{hypo}\) otherwise I 12 0.1 4 L O A
Ohno et al. (1996) California 248 - 17 5.0 7.5 \(M_w\) (\(M_L\)) 7.2 99.6 \(r_q\) for \(M>5.3\), \(r_{hypo}\) otherwise 2 U 0.02 2 B 2M A
Sabetta and Pugliese (1996) Italy 95 95 17 4.6 6.8 \(M_s\) if \(M_L\) & \(M_s \geq 5.5\) else \(M_L\) 1.5, 1.5 179, 180268 Both \(r_{jb}\) & \(r_{epi}\) 3 14 0.04 4 L 1 A
Spudich et al. (1996) & Spudich et al. (1997) Worldwide extensional regimes 99–118 - 27–29 5.10 6.90 \(M_w\) 0 102.1 \(r_{jb}\) 2 46 0.1 2 G, C 2M NS
Abrahamson and Silva (1997) California with some others \(\leq 655\)* \(\leq 650\)* \(\leq 58\) 4.4 7.4 U 0.1 220* \(r_{rup}\) 2 28 0.01 5 G 1M A (S,O,T)
G. M. Atkinson (1997) Cascadia with some foreign U - 11+9 4.1 6.7(8.2) \(M_w\) 20* 580* \(r_c\) for some, \(r_{hypo}\) for small ones 2 12 0.1 2 B 2 A
Campbell (1997), Campbell (2000) & Campbell (2001) Worldwide 266269 173 H:30, V:22 4.7 8.1 \(M_s\) for \(M_s \geq 6\), \(M_L\) for \(M_s<6\) 3 50 \(r_{seis}\) 3 13 0.05 4 G IW A (S,R,N)
Schmidt, Dahle, and Bungum (1997) Costa Rica 200 - 57 3.3 7.6 \(M_w\) (\(M_s\), \(m_b\), \(M_D\)) 6.1 182.1 \(r_{hypo}\) 3 7 0.025 4 L, B O A
Youngs et al. (1997) Worldwide subduction zones \(\leq 476\) - \(\leq 164\) 5.0 8.2 \(M_w\) (\(M_s\),\(m_b\)) 8.5 550.9 \(r_{rup}\), \(r_{hypo}\) for some 2 11 0.075 3 G 1M NT (N,T)
Bommer et al. (1998) Europe & Mid. East 121–183 - 34–43 5.5 7.9 \(M_s\) 3 260 \(r_{jb}\) for most, \(r_{epi}\) otherwise 3 66 0.04 3 L 2 A
Perea and Sordo (1998) Urban area of Puebla, Mexico 10270 - 8 5.8 8.1 \(m_b\) for \(M<6\), \(M_s\) otherwise 274 663 \(r_{epi}\) 1 195 0.01 3.5 L 1 A
Reyes (1998) University City, Mexico City 20+ - 20+ U U \(M_w\) U U \(r_{rup}\) I 2 1.0 3.0 S U A
Shabestari and Yamazaki (1998) Japan 3990 - 1020 U 8.1 \(M_{\mathrm{JMA}}\) U U \(r_{rup}\) U 35 0.04 10 L O A
Chapman (1999) W. N. America 304 - 23 5.0 7.7 \(M_w\) 0.1 189.4 \(r_{jb}\) 3 24 0.1 2 G 2M A
Spudich et al. (1999) Worldwide extensional regimes 105–132 - \(\leq\) 38 5.1 7.2 \(M_w\) 0 99.4 \(r_{jb}\) 2 46 0.1 2 G 1M NS
N. Ambraseys and Douglas (2000), Douglas (2001b) & Ambraseys and Douglas (2003) Worldwide 186 183 44 5.83 7.8 \(M_s\) 0 15 \(r_{jb}\) 3 46 0.1 2 L 1 A
Bozorgnia, Campbell, and Niazi (2000) Worldwide 1308 1308 33 U U \(M_w\) U \(\leq60\) \(r_{seis}\) 4 U 0.05 4 G U A (R,S,T)
Campbell and Bozorgnia (2000) Worldwide 275–435 274–434 \(\leq\) 36 \(\geq\) 4.7 \(\leq\) 7.7 \(M_w\) \(\geq\) 1* \(\leq\) 60* \(r_{seis}\) 4 14 0.05 4 G 1 A (S,R,T)
Chou and Uang (2000) California 273 - 15 5.6 7.4 \(M_w\) 0* 120 \(r_{jb}\) 3 25 0.1 3 G 2M A
Field (2000) S California 357–447 - 28 5.1 7.5 \(M_w\) 0 148.9 \(r_{jb}\) C (6) 3 0.3 3.0 G 1M A (R, S, O)
Kawano et al. (2000) Japan 107 107 44 5.5 7.0 \(M_{\mathrm{JMA}}\) 27 202 \(r_q\) I, C U 0.02 5 U O A
Kobayashi et al. (2000) Japan U - U 5.0 7.8 \(M_w\) 0.9* 400* U 4 17 0.1 5 B 1M A
McVerry et al. (2000) NZ with 66 foreign \(\leq\) 224 (461+66) - (51+17) (5.08) (7.23(7.41)) \(M_w\) (0.1) (573) (\(r_{rup}\) for some, \(r_c\) for most) 4 U 0.01* 4* U O A (N, R, RO)
Monguilner et al. (2000) W. Argentina 54 54 10 4.3 7.4 \(M_s\) if \(M_L\) & \(M_s>6\), \(M_L\) otherwise 11 350 \(r_{hypo}\) 2 200 0.1 6 U 1W A
Paciello, Rinaldis, and Romeo (2000) Greece & Italy 115 - 18 4.5* U \(M_w\) or \(M_s\) U U \(r_{epi}\) 3 2 0.2 1 B 1 A (N)
Shabestari and Yamazaki (2000) Japan 6017 - 94 5.0 6.6 \(M_{\mathrm{JMA}}\) 7* 950* \(r_{rup}\) I 35 0.04 10 L O A
P. Smit et al. (2000) Caucasus 84 - 26 4.0 7.1 \(M_s\) 4 230 \(r_{hypo}\) 1 22 0.05 1 L 2 A
Takahashi et al. (2000) Japan+166 foreign \(\leq\)1332 - U+7* 5* (5.8*) 8.3* (8*) \(M_w\) 1* (0.1*) 300* (100*) \(r_{rup}\), \(r_{hypo}\) for some 4 20 0.05 5 G O A
Lussou et al. (2001) Japan 3011 3011 102 3.7 6.3 \(M_{\mathrm{JMA}}\) 4* 600* \(r_{hypo}\) 4 63 0.02 10 B 2 A
Das, Gupta, and Gupta (2002, 2006) NE India 174 - 6 5.5 7.2 \(M_s\) 53.51* 153.91* \(r_{hypo}\) 1 20 0.04 1 V 2 A
Gülkan and Kalkan (2002) Turkey 93271 - 19 4.5 7.4 \(M_w\) 1.20 150 \(r_{jb}\), \(r_{epi}\) 3 46 0.1 2 L, R 1 A
Khademi (2002) Iran 160 160 28* 3.4* 7.4 \(M_w\) (\(m_b\) for \(M_s<5\) and \(M_s\) otherwise) 0.1* 180* \(r_{jb}\), \(r_{epi}\) for \(M<5.9\) 2 13 0.05 4 L O A
Manic (2002) Former Yugoslavia 153272 77 19 4.0 and 4.2 6.9 and 7.0 \(M_s\) and \(M_L\) 0 and 0 110 and 150 \(r_{jb}\) and \(r_{epi}\) 2 14 0.04 4 B 1 A
Schwarz et al. (2002) N.W. Turkey 683 683 U 0.9* 7.2 \(M_L\) 0* 250* \(r_{epi}\) 3 11 0.01 2 U 1 A
Zonno and Montaldo (2002) Umbria-Marche 161 - 15 4.5 5.9 \(M_L\) 2* 100* \(r_{epi}\) 2 14 0.04 4 L 2 N, O
Alarcón (2003) Colombia 45 or 47 - U 4.0 6.7 \(M_s\) 49.7 322.4 \(r_{hypo}\) 1 84 0.05 3 U U A
Atkinson and Boore (2003) Subduction zones 1200+ - 43* 5.5 8.3 \(M_w\) 11* 550* \(r_{rup}\) 4 7 0.04 3 C 1M F, B
Berge-Thierry et al. (2003) Europe & Mid. East+163 from W. USA 802+163273 403+82274 130+8 4.0 (5.8) 7.9 (7.4) \(M_s\) (\(M_w\) for W. USA) 4 330 \(r_{hypo}\) 2 143 0.03 10 B 2 A
Bommer, Douglas, and Strasser (2003) Europe & Mid. East 422 - 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M_s>6.0\), \(r_{epi}\) otherwise 3 46 0.1 2 L 1M A (S, R, N)
Campbell and Bozorgnia (2003d), Campbell and Bozorgnia (2003a) & Bozorgnia and Campbell (2004b) Worldwide 443 439 36275 4.7 7.7 \(M_w\) 2* 60* \(r_{seis}\) 4 14 0.05 4 G 1 A (S & N, R, T)
Fukushima et al. (2003) Mainly west Eurasia+some US and Japanese 399+341 - 40+10 5.5 7.4 \(M_w\) (\(M_s\)) 0.5 235 \(r_{hypo}\) (\(r_{rup}\) for 2 earthquakes) 2 11 0.03 2 B 2 A
Kalkan and Gülkan (2004a) Turkey - 95–100276 47 4.2 7.4 \(M_w\) (unspecified scales) 1.2 250 \(r_{jb}\), \(r_{epi}\) for small events 3 46 0.1 2 - 1 A
Kalkan and Gülkan (2004a) Turkey 112 - 57 4.0 7.4 \(M_w\) (unspecified scales) \(1.2\) \(250.0\) \(r_{jb}\), \(r_{epi}\) for small events 3 46 0.1 2 L277 1 A
Matsumoto et al. (2004) Japan 293278 - 63 5.0* 7.6* \(M_{\mathrm{JMA}}\) 0* 195* \(r_{rup}\) & \(r_q\) 1 U 0.02* 4* M 1M A (B, C, F)
Özbey et al. (2004) NW Turkey 195 - 17 5.0 7.4 \(M_w\) (\(M_L\)) 5* 300* \(r_{jb}\) 3 31 0.10 4.0 G 1M NS
Pankow and Pechmann (2004) and Pankow and Pechmann (2006) Worldwide extensional regimes 142 - 39 5.1 7.2 \(M_w\) 0 99.4 \(r_{jb}\) 2 46 0.1 2.0 G, O 1M NS
Sunuwar, Cuadra, and Karkee (2004) Okhotsk-Amur plate boundary 667 667 42 4.0 5.6 \(M_{\mathrm{JMA}}\) \(>\)3 \(>\)264 \(r_{hypo}\) 1 19 0.05 3.0 L 2M A
Takahashi et al. (2004) Mainly Japan+W USA+Iran 4400 - 270 4.9* 8.3* \(M_w\) 0.3* 300 \(r_{rup}\) for some, \(r_{hypo}\) for rest 4 21 0.02 5.0 G 1M A (B, F, R, S)
Wang et al. (2004) Chi-chi aftershocks (Taiwan) 200* - 4 5.8 6.3 \(M_w\) 20* 80* \(r_{jb}\) 1 14 0.1 5 G 1M R
Y. Yu and Hu (2004) W USA 522+187279 - 38+14* 5.0 7.5 \(M_s\) 1.5* 575* \(r_{epi}\) 1 U 0.04 20 B O A
Y.-X. Yu and Wang (2004) W USA 187 for \(T<1.5\,\mathrm{s}\), 754 for \(T>1.5\,\mathrm{s}\) - \(>\)17 5.0* (5.0*) 7.8* (7.5*) U 2* 200* (600*) \(r_{epi}\) 1 30 0.04 6.0 B O A
N. N. Ambraseys et al. (2005a) Europe & Middle East 207–595 - 59–135 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 61 0.05 2.5 L 1M A (N, T, S, O)
N. N. Ambraseys et al. (2005b) Europe & Middle East - 207–595 59–135 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 61 0.05 2.5 - 1M A (N, T, S, O)
Bragato and Slejko (2005) E Alps (\(45.6\)\(46.8^{\circ}\)N & \(12\)\(14^{\circ}\)E) 1402 3168 240 2.5 6.3 \(M_L\) 0 130 \(r_{jb}\) & \(r_{epi}\) 1 47 0.05 2.0 R O A
Garcı́a et al. (2005) Central Mexico 277 277 16 5.2 7.4 \(M_w\) 4* 400* \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 15 0.04 5 G280 1M B
McGarr and Fletcher (2005) Central Utah coal-mining areas 31–72 - 12 0.98 4.2 \(M_w\) (\(M_{CL}\)) 0.5* 10* \(r_{hypo}\) 2 5 0.1 2.0 L 2M M
Pousse et al. (2005) Japan 6812 - 591 4.1 7.3 \(M_w\) (\(M_{\mathrm{JMA}}\)) 5.5 303 \(r_{hypo}\) (\(r_{rup}\) for 10 events) 5 U 0.01 4.0 B 2 A
Takahashi et al. (2005), Zhao et al. (2006) and Fukushima et al. (2006) Japan+208 overseas 2763–4518+208 - \(<\)249+20 5.0 8.3 \(M_w\) 0* 300* \(r_{rup}\) 5 20 0.05 5 G 1M C (R, S/N) & F, B
Wald et al. (2005) California U - U U 5.3* \(M_w\) U U \(r_{jb}\) 1 3 0.3 3 L U A
G. M. Atkinson (2006) Los Angeles region 461–4973 - 509+ 3.1* 7.1* \(M_w\) 5* 350* \(r_{epi}\) (\(r_{jb}\) for some) 3 0.3 3.0 I, C B 1 A
Beyer and Bommer (2006) Shallow crustal (USA, Taiwan, Turkey and others) 949 - 103 4.3* 7.9* \(M_w\) 6* 200* \(r_{hypo}\) U 77 0.01 5.0 1, 2, A, B, C, D50, G, I50, L, N, P, R 1M A (U)
Bindi et al. (2006) Umbria-Marche 144–239 - \(\leq\) 45 4.0 5.9 \(M_L\) 1* 100* \(r_{epi}\) & \(r_{hypo}\) 4 14 0.04 4 L 1M NS
Campbell and Bozorgnia (2006a) and Campbell and Bozorgnia (2006b) Worldwide 1500+ - 60+ 4.2 7.9 \(M_w\) 0 200 \(r_{rup}\) C U U 10 G 2M A
Hernandez et al. (2006) Haulien LSTT (Taiwan) 456 456 51 5 7.3 \(M_L\) 13.7 134.8 \(r_{hypo}\) 5 143 0.03 10 B 1 A
Jaimes, Reinoso, and Ordaz (2006) Ciudad Universitaria station, Mexico City 21 - 21 6.0 8.1 \(M_w\) 285 530 \(r_{rup}\) 1 30 0.2 6 U 1B F
Kanno et al. (2006) Japan+some foreign 3205–3392+331–377 (shallow) & 7721–8150 (deep) - 70–73+10 & 101–111 5.0* (6.1) & 5.5* 8.2* (7.4) & 8.0* \(M_w\) (\(M_{\mathrm{JMA}}\)) 1* (1.5*) & 30* 450* (350*) & 450* \(r_{rup}\) (\(r_{hypo}\) for some) C 37 0.05 5 R 2M A
Kataoka et al. (2006) Japan 5160 - 47 4.8* 6.9* \(M_w\) 1* 200* U 1 18 0.1 5 U U C
McVerry et al. (2006) New Zealand 435 - 49 5.08 7.09 \(M_w\) 6 400 \(r_c\) (\(r_{rup}\)) 3 11 0.075 3 L, G 1M C (R, OR, S & N) & F, B
Pousse et al. (2006) Japan 9390281 - U 4.1 7.3 (\(M_w\)) 5* 250* \(r_{hypo}\) (\(r_{rup}\) for some) 5 U 0.01 3 B 2M A
Sakamoto, Uchiyama, and Midorikawa (2006) Japan 3198 - 52 5.5 8.3 \(M_w\) 1 300 \(r_{rup}\) 5 U 0.02 5 M 1M A
Sharma and Bungum (2006) Indian Himalayas+9 European records 175+9 - 12+7 4.5 (6.0) 7.2 (7.4) \(M_w\) (\(m_b\)) 10 200 \(r_{hypo}\) 2 13 0.04 2.5 G 1W A
Sigbjörnsson and Elnashai (2006) Europe & Mid. East 422 - 157 4.0 7.9 \(M_s\) (unspecified) 0 260 \(r_{jb}\) for \(M>6.0\), \(r_{epi}\) otherwise 3 52 0.1 4 L 2 A
Tapia (2006) & Tapia, Susagna, and Goula (2007) Western Mediterranean 334 - 30 3.8 6.0 \(M_L\) 6 542 \(r_{epi}\) 1 5 0.1 2.0 U 1 A
Uchiyama and Midorikawa (2006) Japan 3198 - 52 5.5 8.3 \(M_w\) U U \(r_{rup}\) 1 U 0.02 5 G 2M A (C/F, B)
Zare and Sabzali (2006) Iran 89 89 55* 2.7 7.4 \(M_w\) 4 167 \(r_{hypo}\) 4 21 0.10 4 U 1M & 2M A
Akkar and Bommer (2007a) Europe & Middle East 532 - 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) 3 80 0.05 4 G 1WM A (N, S, R)
Bindi et al. (2007) NW Turkey 4047 4047 528 0.5 5.9 \(M_L\)282 5* 200* \(r_{hypo}\)283 2 8 0.1 1284 L 1M A
Bommer et al. (2007) Europe and Middle East 997 - 289 3 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 10 0.05 0.50 G 1WM A (N, S, R)
Boore and Atkinson (2007) & Boore and Atkinson (2008) Worldwide shallow crustal 600*–1574 - 18*–58 4.27–5.00285 7.90286 \(M_w\) 0 280287 \(r_{jb}\) C 21 0.01 10 I50 2M A (N, R, S, U)
Campbell and Bozorgnia (2007), Campbell and Bozorgnia (2008b) & Campbell and Bozorgnia (2008a) Worldwide shallow crustal 506–1561 - 21–64 4.27288 7.90289 \(M_w\) 0.07 199.27 \(r_{rup}\) C 21 0.01 10 I50 1M A (N, R, S, HW)
Danciu and Tselentis (2007a), Danciu and Tselentis (2007b) & Danciu (2006) Greece 335 - 151 4.5 6.9 \(M_w\) 0* 136 \(r_{epi}\) 3 31 0.10 4 A 1M A (N, ST)
Y. Fukushima, Bonilla, et al. (2007b) & Y. Fukushima, Bonilla, et al. (2007a) Mainly west Eurasia+some US and Japanese 399+339 - 40+10 5.5 7.4 \(M_w\) (\(M_s\)) 0.5 235 \(r_{hypo}\) (\(r_{rup}\) for 2 earthquakes) 5 U 0.03 3 B 2M A
Hong and Goda (2007) & Goda and Hong (2008) California 484–592 - 34–39 5* 7.4* \(M_w\) 0.2* 100* \(r_{jb}\) C 27 0.1 3 G, Q, R 1M A
Massa et al. (2007) Central northern Italy 1063 - 243 2.5 5.2 \(M_L\) 0* 300* \(r_{hypo}\) 2 8 0.1 1.5 L 1 A
Tejeda-Jácome and Chávez-Garcı́a (2007) Colima, Mexico 162 162 26 3.3 5.2 \(M_L\) 5* 175 \(r_{hypo}\) 1 H:10, V:9 0.07 H:0.99, V:0.80 G 2M A
Abrahamson and Silva (2008) & Abrahamson and Silva (2009) Worldwide shallow crustal 500*–2754 - 64–135 4.27290 7.9291 \(M_w\) 0.06* 200* \(r_{rup}\) C 22 0.01 10 I50 1M A (N, R, S, HW)
Aghabarati and Tehranizadeh (2008) Worldwide shallow crustal 646 646 54 5.2 7.9 \(M_w\) 0 60 \(r_{rup}\) C 26 0.025 10 G 1M A (N, R, S)
C. Cauzzi and Faccioli (2008) & C. V. Cauzzi (2008) Worldwide shallow crustal 1164 1132 60 5.0 7.2 \(M_w\) 6* 150* \(r_{hypo}\) 4 & C 400 0.05 20 G 2M A (N, S, R)
Y. Chen and Yu (2008b) Worldwide shallow crustal 130 - U 5.0* 7.5* \(M_w\) 0* 200* U 1 U 0.04 10 B 1 A
Y. Chen and Yu (2008a) Worldwide shallow crustal 130 - U 5.0* 7.5* \(M_w\) 0* 200* U 1 U 0.04 10 B 1 A
B. S.-J. Chiou and Youngs (2008) Worldwide shallow crustal \(\leq\)1950292 - \(\leq\)125 4.265293 7.90294 \(M_w\) 0.2*295 70*296 \(r_{rup}\) C 22 0.01 10 I50 1M A (N, R, S, HW, AS)
Cotton et al. (2008) Japan 3894 - 337 4 7.3 \(M_w\) (\(M_{\mathrm{JMA}}\)) 1 100 \(r_{rup}\) (\(r_{hypo}\) for small) 4297 & 2298 23 0.01 3.33 G 2M A
Dhakal, Takai, and Sasatani (2008) Northern Japan 772 (B), 1749 (F) - 10 (B), 20 (F) 5.4 (B), 5.1 (F) 7.0 (B), 7.3 (F) \(M_w\) 70* 300* \(r_{hypo}\) 1 16 0.1 5 V 2 B, F
Hancock, Bommer, and Stafford (2008) Worldwide shallow crustal U - U 5.6* 7.9* \(M_w\) 0.1* 400* \(r_{jb}\) 3 U 0* 2.5* U 1M A (S, N, R/RO)
Idriss (2008) Worldwide shallow crustal 942 - 72 4.5 7.7 \(M_w\) 0.3 199.3 \(r_{rup}\) 2 31 0.01 10 I50 1 A (R/RO/NO, S/N)
Kataoka et al. (2008) Japan 1880 (crustal), 2374 (subduction) - 11 (crustal), 14 (subduction) 5.8 (crustal), 6.1 6.9 (crustal), 8.2 (subduction) \(M_w\) 0.1* (crustal), 10* (subduction) 600* (crustal), 900* (subduction) U 1 19 2 20 U U C, BF
Lin and Lee (2008) NE Taiwan+10 foreign 4244+139 - 44+10 4.1 (6.0) 7.3 (8.1) \(M_w\) (\(M_L\)) 15 630 \(r_{hypo}\) 2 27 0.01 5 G 1W A (B, F)
Massa et al. (2008) Northern Italy 306 306 82 3.5 & 4.0 6.3 & 6.5 \(M_w\) (\(M_L\)) & \(M_L\) 1* 100* \(r_{epi}\) 3 12 & 14 0.04 2 & 4 L 1M A
Morasca et al. (2008) Molise 3090 3090 100 2.7 5.7 \(M_L\) 12* 60* \(r_{hypo}\) 2 12 0.04 2 L 1M A
Yuzawa and Kudo (2008) Japan 1988 - 18 5.9, 5.7 8.0, 7.9 \(M_{JMA}\), \(M_w\) U U \(r_q\) 1 45 1 10 U 2 A
Ghasemi et al. (2009) Iran+West Eurasia 716+177 - 200 5.0 7.4 \(M_w\) 0.5 100 \(r_{rup}\) (\(r_{hypo}\) for small events) 2 17 0.05 3 I50 1M A
Aghabarati and Tehranizadeh (2009) Worldwide shallow crustal 678 678 55 5.2 7.9 \(M_w\) 0 60 \(r_{rup}\) C 26 0.025 10 G 1M A (N, R, S)
Akyol and Karagöz (2009) Western Anatolia 168 - 49 4.03 6.40 \(M_w\) (\(M_d\), \(M_L\)) 15 200 \(r_{hypo}\) 2 30 0.05 2 L 2M A
Bindi, Luzi, and Pacor (2009) Italy 241 241 27 4.8 6.9 \(M_w\) 0 190 \(r_{jb}\) 3 18 0.03 2 L, G 1M A (N, S, R)
Bindi, Luzi, et al. (2009) Italy 235 - 27 4.6 6.9 \(M_w\) (\(M_L\)) 0 183 \(r_{jb}\), \(r_{epi}\) 3 19 0.03 3 L 1M A
Bragato (2009) Italy 922 - 116 2.7 4.5 \(M_L\) 6 100 \(r_{epi}\) I, 3, 1, C 3 0.3 3 U 1 A
Goda and Atkinson (2009) Japan 8557 (3410 shallow, 5147 deep) - 155 (51 shallow, 104 deep) 5.5 7.9 \(M_w\) 1.5* 300* \(r_{rup}\) (\(r_{hypo}\) for some \(M<6.5\)) C U 0.1 5 G 2M A (C/F, B)
H. P. Hong, Pozos-Estrada, and Gomez (2009) Mexico (interface & inslab) 418, 277 -, - 40, 16 5.0, 5.2 8.0, 7.4 \(M_w\) U U \(r_{rup}\) (\(r_{hypo}\) for small) 1 27 0.1 3 G, R, Q 1M F, S
H. P. Hong, Zhang, and Goda (2009) California 484–592 - 34–39 5* 7.4* \(M_w\) 0.2* 100* \(r_{jb}\) C 27 0.1 3 G, R 1M, 2M, O A
Kuehn, Scherbaum, and Riggelsen (2009) Worldwide 2660 - 60 5.61 7.9* \(M_w\) 0.1* 200* \(r_{jb}\) C 39 0.01 3 G 1M (O) A (N, R, S)
Moss (2009) & Moss (2011) Worldwide shallow crustal 1950 - 125 4.265 7.90 \(M_w\) 0.2* 70* \(r_{rup}\) C 5 0.1 7.5 I50 1M A (N, R, S, HW, AS)
Rupakhety and Sigbjörnsson (2009) South Iceland+others 64+29 - 12 5.02 7.67 \(M_w\) 1 97 \(r_{jb}\) (\(r_{epi}\) for some) 2 66 0.04 2.5 L 1 SO
Sharma et al. (2009) Indian Himalayas+Zagros 58+143 - 6+10 5.5 & 5.9 6.8 & 6.6 \(M_w\) 5* & 10* 190* & 200* \(r_{jb}\) 1 13 0.04 2.5 G O A (S, R)
Akkar and Bommer (2010) Europe & Middle East 532 - 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) 3 60 0.05 3 G 1M A (N, S, R)
Akkar and Çağnan (2010) Turkey 433 - 137 5.0 7.6 \(M_w\) 0* 200* \(r_{jb}\) C 14 0.03 2 G 1M A (N, S, R)
Amiri et al. (2009) Alborz and central Iran299 416 - 189 3.2300 7.7 \(M_s\) (\(m_b\)) 5* 400* \(r_{hypo}\) 2 15 0.1 4 L 1M A
Arroyo et al. (2010) Pacific coast of Mexico 418 - 40 5.0 8.0 \(M_w\) 20 400 \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6\)) 1 56 0.04 5 U O F
Bindi et al. (2010) Italy 561 561 107 4.0 6.9 \(M_w\) 1* 100* \(r_{jb}\), \(r_{epi}\) 3 21 0.03 2 L 1M A
Bozorgnia, Hachem, and Campbell (2010) Worldwide shallow crustal 506–1561 - 21–64 4.27 7.90 \(M_w\) 0.07 199.27 \(r_{rup}\) C 21 0.01 10 G 1M A (N, R, S, HW)
Das and Gupta (2010) Chi-Chi region (Taiwan) 487–498 - 16 4.99 7.3 \(M_w\) (\(M_L\)) 0* 50* \(r_{rup}\) 3 16 0.04* 10 G 1M A
Douglas and Halldórsson (2010) Europe & Middle East 595 - 135 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) (\(r_{epi}\) for small events) 3 61 0.05 2.5 L 1WM A (N, T, S, O, AS)
Faccioli, Bianchini, and Villani (2010) Worldwide shallow crustal 1499 - \(\leq\) 60 4.5 7.6 \(M_w\) 0.2* 200* \(r_{rup}\) (\(r_{hypo}\) for small) 4 & C 22 0.05 20 G 1M A (N, R, S)
Hong and Goda (2010) California301 484–592 - 34–39 5.0 7.28 \(M_w\) 0.2* 100* \(r_{jb}\) C 6 0.2 3 1, 2 1M A
Jayaram and Baker (2010) Worldwide shallow crustal 1561 - 64 4.27 7.90 \(M_w\) 0.07 199.27 \(r_{rup}\) C 21 0.01 10 I50 O A (N, R, S, HW)
Montalva (2010) & Rodriguez-Marek et al. (2011) Japan 3894 - 337 4 7.3 \(M_w\) (\(M_{\mathrm{JMA}}\)) 1 100 \(r_{rup}\) (\(r_{hypo}\) for small) C, I 21 0.0384 1.3622 G O (1M) A
Ornthammarath et al. (2010), Ornthammarath (2010) & Ornthammarath et al. (2011) South Iceland 81 - 6 5.1 6.5 \(M_w\) 1* 80* \(r_{jb}\) (\(r_{epi}\) for \(M_w<6\)) 2 4 0.2 2 G 1M S
Rodriguez-Marek and Montalva (2010) Japan 3894 - 337 4 7.3 \(M_w\) (\(M_{\mathrm{JMA}}\)) 1 100 \(r_{rup}\) (\(r_{hypo}\) for small) C 7 0.01 1.3622 G 2M A
Sadeghi, Shooshtari, and Jaladat (2010) Iran 883 - 79 5 7.4* \(M_w\) 0* 340* \(r_{epi}\) 2 8 0.1 3 U O A
Saffari et al. (2010) Central Iran & Zagros 627 - 110 5 7.4* \(M_w\) 5* 200* \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 2 19 0.05 5 U 2M A
Anderson and Uchiyama (2011) Guerrero, Mexico 293 293 27 5.05 7.96 \(M_w\) 10* 390* \(r_{rup}\) 1 5 0.1 3 M, V, V3 O A
Arroyo and Ordaz (2011) Worldwide shallow crustal 906, 458 - 44, 28 U U \(M_w\) U U \(r_{rup}\) 1 1 3 3 I50 1M A (R/RO/NO, S/N)
Bindi, Pacor, et al. (2011) Italy 769 - 99 4.1 6.9 \(M_w\) 0* 200* \(r_{jb}\) 5 20 0.04 2 G, V 1M A (S, R, N, U)
Buratti, Stafford, and Bommer (2011) Worldwide shallow crustal 1666 - U 5.6* 7.9* \(M_w\) 0.1* 400* \(r_{jb}\) 3 U 0.06* 3* U 1M A
Cauzzi et al. (2011) Global U - U 3 7.9 \(M_w\) 0* 150* \(r_{rup}\) (\(r_{hypo}\)) C, 4 10 1 10 B 1M A
Chopra and Choudhury (2011) Gujarat (India) 407 407 \(>\)70 3.5 5.7 \(M_w\) 0* 300* \(r_{hypo}\) 2 6 0.05 1 G 1 A
Gehl, Bonilla, and Douglas (2011) Japan 3874 - 335 4.0 7.3 \(M_w\) 0* 340* \(r_{rup}\) C 5 0.1 2 G 1M, O A
P.-S. Lin, Lee, et al. (2011) Taiwan+8 foreign events 5181+87 - 44+8 3.5 (6.0) 7.6 (7.4) \(M_w\) (\(M_L\)) 1 240 \(r_{rup}\) (\(r_{hypo}\)) 2 15 0.01 5 G 1 A (HW)
Chang, Jean, and Loh (2012) Taiwan 302 - 58 5.5 7.3 \(M_L\) 0* 170* \(r_{hypo}\) (\(r_{rup}\) for some) 1 U 0.01 10 G 1 A
Contreras and Boroschek (2012) Chile 117 - 13 6.5 8.8 \(M_w\) 30* 600* \(r_{rup}\), \(r_{hypo}\) for 4 events 2 23 0.04 2 G 1M F
Cui et al. (2012) Sichuan-Yunnan (China) 962 - \(>\)21 4.5 6.5 \(M_s\) 0* 110* \(r_{epi}\) 2 5 0.04 6 G 1, 1W A
Di Alessandro et al. (2012) Italy 602 - 120 4.0 6.8 \(M_w\) 2* 200* \(r_{hypo}\) 7 58 0.033 2.01 G 1M A
Hamzehloo and Mahood (2012) East central Iran 258 - 109302 4.9* 7.4 \(M_w\) 1* 200* \(r_{jb}\) 1 14 0.1 5 G 2M A
Laouami and Slimani (2012) Algeria \(+\) Europe & USA 633 \(+\) 528 & 155303 - 82+17* & 7* 3 (5*) 6.8 (7.3*) \(M_s\) 6* (10*) 140* (150*) \(r_{hypo}\) 2 U 0.01 3* B 2 A
Saffari et al. (2012) Iran 351 - 78 5.0 7.4 \(M_w\) 4 190* \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 3 20 0.05 5 U 2M A
Abrahamson, Silva, and Kamai (2013, 2014) Worldwide shallow crustal 15750–4000* - 326–70* 3 7.9304 \(M_w\) 0 300 \(r_{rup}\) + others for HW C 22 0.01 10 D50 1M A (S, N, R, HW, AS)
Boore et al. (2013, 2014) Worldwide shallow crustal 15000*–5000* - 350*–100* 3.0 7.9305 \(M_w\) 0 400 \(r_{jb}\) C 105 0.01 10 D50 2M A (S, N, R, U)
Campbell and Bozorgnia (2013, 2014) Worldwide shallow crustal 15521–U* - 322–U* 3.0306 7.9307 \(M_w\) 0* 300* \(r_{rup}\) C 21 0.01 10 D50 1M A (S, R, N, HW)
Chiou and Youngs (2013, 2014) Worldwide shallow crustal 12244–4200* - 300–U* 3.1*308 7.9*309 \(M_w\) 0.3* 400*310 \(r_{rup}\) C 24 0.01 10 D50 1M A (S, R, N, HW)
Douglas et al. (2013) Mainly geothermally-related 3968 - 535 1* 4* \(M_w\) (\(M_L\), \(M_D\)) 0* 20* \(r_{hypo}\) 1 104 0.01 0.5 G 1M G
Idriss (2013, 2014) Worldwide shallow crustal 2353 - 151 4.5311 7.9312 \(M_w\) 0.2 175 \(r_{rup}\) C 22 0.01 10 D50 1 A
Laurendeau et al. (2013) Japan 2357 - 132 4.5 6.9 \(M_w\) 3* 300* \(r_{rup}\) (\(r_{hypo}\) for small) C 23 0.02 1.3622 G 1M A
Morikawa and Fujiwara (2013) Japan 21681 - 333 5.5 9.0 \(M_w\) 1* 200 \(r_{rup}\) C 47 0.05 10 V 2W A (C, B, F)
Pacific Earthquake Engineering Research Center (2013) Worldwide shallow crustal - \(M_w\) C 0.01 3 - 1M A (N, S, R, HW)
Segou and Voulgaris (2013) Europe & Middle East 327 - 164 4.1 6.6 \(M_w\) (\(m_b\)) 1* 150* \(r_{epi}\) 3 41 0.05 2 I50 O A (S, R, N)
Sharma et al. (2013) Geysers, N. California 5451 - 212 1.3 3.3 \(M_w\) (\(M_D\)) 0.5 20 \(r_{hypo}\) 3 3 0.2 1 L 1M G
Skarlatoudis et al. (2013) Hellenic Arc (Greece) \(\leq\)743 - \(\leq\)21 4.4 6.7 \(M_w\) (\(m_b\), \(M_L\)) 65* 850* \(r_{hypo}\) 3 9 0.01 4 D50 1M F, B
Akkar, Sandıkkaya, and Bommer (2014a, 2014b) Europe & Middle East 1041–600* - 221 4.0 7.6313 \(M_w\) 0 200 \(r_{jb}\) C 62 0.01 4 G 1M A (S, N, R)
Ansary (2014) Himalaya, India R: 229, S: 187 - 150* 2.5* 7.8 U 2* 2000* \(r_{hypo}\) 2 3 0.3 2 U 1 A
Bindi, Massa, et al. (2014b, 2014a) Europe & Middle East 1224–800*, 2126–1460 - 225–150*, 365–226 4.0 7.6 \(M_w\) 0 300 \(r_{jb}\) (\(r_{epi}\) for \(M_w\leq 5\) and \(r_{epi}\geq 10\)) & \(r_{hypo}\) C, 4 23314 0.02 3 G 1M A (S, N, R)
Derras, Cotton, and Bard (2014) Europe & Middle East 1088 - 320 3.6315 7.6316 \(M_w\) 1317 547318 \(r_{jb}\) C 62 0.01 4 G O A
Ghofrani and Atkinson (2014) Japan \(>1000\) - 6 7.0 9.0 \(M_w\) 30* 1000* \(r_{rup}\) C 23 0.07 9.09 G O F
Kurzon et al. (2014) San Jacinto fault zone (S. California, USA) 29474 - 809 1.5 5.9 \(M_L\) 0 150 \(r_{epi}\) 1 12 0.03 1 G 1M A
Luzi et al. (2014) Italy 829, 2805, 401 - 146, 658, 41 4, 4, 3.5 6.9, 6.9, 6.3 \(M_w\) (\(M_L\)) 0* 200* \(r_{jb}\) (\(r_{epi}\) for \(M<5.5\)) 5 23 0.04 4 G 1M A
Rodrı́guez-Pérez (2014) Cen. and S. Mexico 75 (F), 121 (B) - 8 F, 25 B 5.1 (F), 5.0 (B) 8.0 (F), 7.2 (B) \(M_w\) 50* (F), 70* (B) 580* (F), 540* (B) \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 1 15 0.04 5 G 1M F, B
Stafford (2014) Worldwide shallow crustal U - U U U \(M_w\) U U \(r_{rup}\) C U 0.01 2 G 1M, O A (S, N, R, AS)
Vacareanu et al. (2014) 9 events from Vrancea (Romania) + 17 foreign events 233+198 - 9+17 5.2 (5.6)319 7.4 (7.8)320 \(M_w\) 105321 650*322 \(r_{hypo}\) 1 19 0.1 4 G 1M B
Atkinson (2015) California U - U 3* 6* \(M_w\) 2* 40 \(r_{hypo}\) 1 10 0.03 5 G 1M A
C. Cauzzi, Faccioli, Vanini, et al. (2015) Worldwide shallow active crustal 1880 - 98 4.5 7.9 \(M_w\) 0* 150* \(r_{rup}\) (\(r_{hypo}\) for \(M_w\leq 5.7\)) C 208 0.02 10 G 2M A (S, N, R)
Emolo et al. (2015) South Korea 11129 - 222 2.0 4.9 \(M_L\) 1.4 600* \(r_{epi}\) I 13 0.055 5 L 1M A
Haendel et al. (2015) Northern Chile 1094 - 138 5* 8.1 \(M_w\) 40* 300* \(r_{rup}\) 2 9 0.03 3 G 1M B, F
Jaimes, Ramirez-Gaytán, and Reinoso (2015) Ciudad Universitaria, Mexico City323 22 - 22 5.2 7.4 \(M_w\) 103 464 \(r_{rup}\) for \(M_w >6.5\), \(r_{hypo}\) for \(M_w\leq 6.5\) 1 25 0.2 5 G 1B B
Kale et al. (2015) Turkey & Iran 1198 - 313 4 7.6324 \(M_w\) 0 200 \(r_{jb}\) C 62 0.01 4 G 1MW A (S, N, R)
Kuehn and Scherbaum (2015) Europe & Middle East 835 - 279 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\) C 8 0.01 4 G O A (R, N, S)
Pacific Earthquake Engineering Research Center (2015) — Al Noman and Cramer Cen. and E. N. America + foreign 6061325 - 78326 2.5 7.6327 \(M_w\) 1* 2000* \(r_{rup}\) C 21 0.1 10 D50 2M A (R, S, U)
Vacareanu, Radulian, et al. (2015) Vrancea, Romania + foreign intermediate-depth 344+360 - 9+29 5.2 (5.1) 7.4 (8.0) \(M_w\) 2 (\(r_{epi}\)) 399 (\(r_{epi}\)) \(r_{hypo}\) 3 19 0.1 4 G 1M A
Vuorinen, Tiira, and Lund (2015) Fennoscandian shield U - 2239 U U U U U U U U U U U 1 A
Zhao et al. (2015) Japan + some overseas 16362 - 335 + 62 4.9* 9.1* \(M_w\) 0* 300* \(r_{rup}\) if available, \(r_{hypo}\) otherwise 4 + C 24 0.05* 5* G 1M A (B, F, R, N, S)
Abrahamson, Gregor, and Addo (2016) & BC Hydro (2012) Worldwide subduction 2590 for B, 953 for F - 63 for B, 43 for F 5.0 for B, 6.0 for F 7.9 for B, 8.4 for F \(M_w\) 12* 300* \(r_{rup}\) (\(r_{hypo}\)) for F, \(r_{hypo}\) for B C 22 0.02 10 G 1M B, F
Bommer et al. (2016) Groningen, Netherlands (induced seismicity) 85 - 12 2.6 3.6 \(M_w\) 0.5* 19.5* \(r_{epi}\) 1 5 0.01 2 G 1M E
Bozorgnia and Campbell (2016b) Worldwide shallow crustal - 15161 321 3.0328 7.9329 \(M_w\) 0* 500*330 \(r_{rup}\) C 21 0.01 10 - 1M A (R, S, N)
S. R. Kotha, Bindi, and Cotton (2016a, 2016b) Europe & Middle East 1251 - U 4 7.6 \(M_w\) 0* 300*331 \(r_{jb}\) (\(r_{epi}\) for some \(M_w\leq 5\)) C 17 0.01 4 G O A
Landwehr et al. (2016) California & Nevada 10692 - 221 3.0* 7.3* \(M_w\) 1* 300* \(r_{jb}\) C 7 0.02 4 U332 O A (S, N, R)
Lanzano et al. (2016) Po Plain & NE Italy 2489 - 94 4.0 6.4 \(M_w\) 0* 200* \(r_{jb}\) 5 24 0.04 4 G 1M A (R, N, U)
Sedaghati and Pezeshk (2016) Europe & Middle East 350 - 85 5.0 7.6 \(M_w\) 1* 100* \(r_{jb}\) 4 2 0.2 1.0 G 1, 1W, 1M, 2, 2M, 2O and O A
Shoushtari, Adnan, and Zare (2016) Malaysia, Japan and Iran 531 - 13 5.0 7.7 \(M_w\) 120* 1400* \(r_{hypo}\) 4 19 0.1 5 G 1 B
Stewart et al. (2016) Worldwide shallow crustal - 17089 U 3 7.9333 \(M_w\) 0 300 \(r_{jb}\) C 105 0.01 10 - 2M A (R, S, N, U)
Sung and Lee (2016) Taiwan 19887 - 150 4.01 7.62 \(M_w\) (\(M_L\)) 0.32 291.59 \(r_{hypo}\), \(r_{rup}\) for Chi-Chi C 3 0.3 3 U 1M, O A (S, N, R)
Tusa and Langer (2016) Mount Etna, Italy 1158 (shallow), 1957 (deep) 1158 (shallow), 1957 (deep) 38 (shallow), 53 (deep) 3.0 4.3 (shallow), 4.8 (deep) \(M_L\) 0.5 100 \(r_{epi}\) 3 23334 0.1 10 G 1 V
Wang et al. (2016) Offshore NE Taiwan 20*–832 - 13 4.0 5.9 \(M_w\) 20* 300* \(r_{hypo}\) C 105 0.01 10 G 1 N
J. X. Zhao, Jiang, et al. (2016) Japan 4555\(+\)155 - 125\(+\)11 5.0* 7.92 (8.25) \(M_w\) 25* 300* \(r_{rup}\), \(r_{hypo}\) for most 4 36 0.01 5.0 G 1M B
J. X. Zhao, Liang, et al. (2016) Japan 3111\(+\)463 - 76 5.0* 9.0 \(M_w\) 20* 300* \(r_{rup}\), \(r_{hypo}\) for most 4 36 0.01 5.0 G 1M F
J. X. Zhao, Zhou, et al. (2016) Japan + some foreign 5957 - 117 4.9 7.2* \(M_w\) 0* 280* \(r_{rup}\), \(r_{hypo}\) for most 4 36 0.01 5 G 1M C (N), UM (R, NS)
Ameri et al. (2017) Europe & Middle East 2355 - 384 3 7.6 \(M_w\) 0* 200* \(r_{epi}\), \(r_{jb}\) 4 26 0.01 3 G 1M A (N, R, S)
Bindi et al. (2017) Worldwide shallow crustal 4692 - 242 3* 7.9* \(M_w\) 4* 300* \(r_{hypo}\), \(r_{jb}\) C 89 0.02 4 G 1M A
Çağnan et al. (2017a, 2017b) Europe & Middle East - 1041 221 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\) C 18 0.01 4 V 1M A (S, N, R)
Derras, Bard, and Cotton (2017) Japan 977 - 214 3.7 6.9 \(M_w\) 3.65 440.63 \(r_{jb}\) C \(\times\) C 18 0.01 4.0 G O A
Garcı́a-Soto and Jaimes (2017) Mexico (Pacific coast) 418 418 40 5.0 8.0 \(M_w\) 17 400 \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 70335 0.01 5 V 1M F
Gülerce et al. (2017) Worldwide shallow crustal - 15597–4000* 326–70* 3 7.9336 \(M_w\) 0 300 \(r_{rup}\) + others for HW C 21 0.02 10 V 1M A (S, N, R, HW, AS)
Hassani et al. (2017) Iran337 806 - 330 4.0 7.3 \(M_w\) (\(m_b\), \(M_s\), \(M_L\)) 1* 280* \(r_{epi}\) 3 16 0.06 4 L 1M A
Idini et al. (2017) Chile 100*–114 for B, 150–369 for F - U–38 for B, U–65 for F 5.5 7.8 for B, 8.8 for F338 \(M_w\) 61 for B, 31 for F 386 for B, 391 for F \(r_{hypo}\) (\(r_{rup}\) for F and \(M_w\geq 7.7\)) C 21 0.01 10 U 2M B,F
G. A. Montalva, Bastı́as, and Rodriguez-Marek (2017b, 2017a, 2017c) Chile 2461 for F, 1313 for S - 281 for F, 192 for B 4.5* 8.8 for F, 7.8* for B \(M_w\) (\(M_L\)) 25* for F, 60* for B 1000* for F, 500* for B \(r_{rup}\) for F, \(r_{hypo}\) for B C 22 0.02 10 G 1M F, B
Peruzza et al. (2017) Mount Etna, Italy 1158 - 38 3.0 4.3 \(M_L\) 0.5 100 \(r_{hypo}\) 3 11 0.1 10 G 1 V
Sedaghati and Pezeshk (2017) Iran \(\leq\)688 \(\leq\)688 \(\leq\)152 4.7 7.4 \(M_w\) 1* 250* \(r_{jb}\) C 13 0.05 4 1M G A
Shahidzadeh and Yazdani (2017) Iran 289 - 136 5.0* 7.4* \(M_w\) 0* 190* \(r_{jb}\), \(r_{epi}\) for some 3 14 0.05 2.5 L O A (S, R, N)
Soghrat and Ziyaeifar (2017) N Iran 325 325 55 4.1 7.3 \(M_w\) (U) 5.3 303.1 \(r_{jb}\), \(r_{epi}\) for some 4, C 30 0.01 4.0 G 1M A (S, R, U)
Zuccolo, Bozzoni, and Lai (2017) Southwest Italy 2270 - 319 1.5 4.2 \(M_L\) 3 100* \(r_{hypo}\) 1 11 0.1 3 B 1W A
Ameur, Derras, and Zendagui (2018) Worldwide shallow crustal 2335 - 137 3.2339 7.9340 \(M_w\) 0.01341 358342 \(r_{jb}\) C 17 0.01 4.0 G O A
M. D’Amico et al. (2018) S Calabria & Sicily (Italy) 832–840 - 48 4.0 6.0 \(M_w\) (\(M_L\)) 2* 200* \(r_{jb}\) (\(r_{epi}\) for most) 4 3 0.3 3.0 G 1M A
Felicetta et al. (2018) Italy 769 - 99 4.1 6.9 \(M_w\) 0* 200* \(r_{jb}\) 5, 6 20 0.04 2 G 1M A (S, R, N, U)
Gupta and Trifunac (2018c) W Himalaya and NE India 365 365 83 4.0* 6.9* U 5* 340* \(r_{hypo}\) 3 \(\times\) 3 13 0.04 3.0 B, V O A
Ktenidou et al. (2018) Euroseistest (N Greece) 691 - 74 2.0 5.6 \(M_L\) 5 220 \(r_{rup}\) 1, 2, C, I U 0.01 2 D50 1M A
S. R. Kotha, Cotton, and Bindi (2018a) Japan 6462–15896 - U–850 3.4 7.3 \(M_w\) 0 543 \(r_{JB}\) I, 8 33 0.01 2 G O A
Laouami, Slimani, and Larbes (2018b, 2018a) Algeria + Europe + W. USA 556 + 494 + 158 - 82 + 58 + 8 3.0 + 5.3 + 5.9 6.8 + 7.6 + 7.2 \(M_w\) (\(M_s\)) 6* 230* \(r_{hypo}\) 3 58 0.02 4.0 B 2 A
Laurendeau et al. (2018) Japan 1031, 765 - 80, 75 4.5*, 4.5* 6.9* \(M_w\) 4* 290* \(r_{rup}\) C 20 0.03 2.0 G 1M A
Mahani and Kao (2018) Graham and Septimus areas (BC, Canada) U, U - 129, 90 1.5, 1.5 3.8, 3.0 \(M_L\) 2.3, 1.6 19, 42 \(r_{hypo}\) 1 5 0.1 1 G 1M W
Sharma and Convertito (2018) The Geysers, USA 261711 - 10974 0.7 3.3 \(M_w\) (\(M_D\)) 0.1 73 \(r_{hypo}\) I 5 0.05 1.0 L 1M G
Shoushtari, Adnan, and Zare (2018) Japan + Malay Peninsula 651 + 77 - 11 + 14 5.0 + 6.7 9.1 + 9.0 \(M_w\) 120* + 500* 1300* + 1000* \(r_{hypo}\) 4 19 0.1 5 G 1 F
Wen et al. (2018) Sichuan region (China) 1644 - 186 4.0 6.7 \(M_s\) 2 200 \(r_{jb}\) C 16 0.04 2 D50 1M A
Zafarani et al. (2018) Iran 1551 - 200 4.0 7.3 \(M_w\) (\(M_L\)) 0.6* 200* \(r_{jb}\) (\(r_{epi}\)) 4 24 0.04 4 G 1M A (R, S, U)
Bindi et al. (2019) Europe & Middle East 2767–18859 - U–2179 3.5 7.8 \(M_w\) (\(M_L\)) 1.5* 300* \(r_{hypo}\) I U 0.01 10 D50 1M A
Darzi et al. (2019) Iran 1350 - 370 4.5 7.4 \(M_w\) (\(M_s\), \(m_b\)) 1* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) & \(r_{rup}\) 3 60 0.01 10 G 2M A (S, R, U)
Farajpour, Pezeshk, and Zare (2019) Iran 1356343 - 208 4.8 7.5 \(M_w\) 1.5* 350* \(r_{rup}\) C 18 0.04 4.0 G 1M A (R, S, N)
Huang and Galasso (2019) Italy 7843 - 233 4.0 6.9 \(M_w\) 1* 250* \(r_{jb}\) (\(r_epi\)) 3 29 0.01 4 D50 O A (R, S, N)
Lanzano, Luzi, Pacor, Felicetta, et al. (2019; Lanzano, Luzi, Pacor, Puglia, et al. 2019) Italy + 12 foreign events 4965 + 823344–4100* - 144 + 12 3.5 + 6.07 6.87 + 8.0 \(M_w\) 0* 200* \(r_{jb}\) (\(r_{epi}\) for \(M<5.5\)), \(r_{rup}\) (\(r_{hypo}\) for \(M<5.5\)) C 36 0.01 10 D50 1M A (N, R, S)
Laouami (2019) Algeria + Europe + W. USA - 257 + 247 + 79 U 3.0 7.4 \(M_w\) (\(M_s\)) 5 150 \(r_{hypo}\) 3 58 0.02 4.0 - 2 A
Sung and Lee (2019) Taiwan 20006 - 497 4.01 7.62 \(M_w\) (\(M_L\)) 0.63 200 \(r_{rup}\) (\(r_{hypo}\) for \(M_w<4.8\)) C, I 3 0.3 3 G 1M A (S, N, R)
Zolfaghari and Darzi (2019b) Iran - 1350 370 4.5 7.4 \(M_w\) (\(M_s\), \(m_b\)) 1* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) & \(r_{rup}\) 3 60 0.01 10 - 2M A (S, R, U)
Chao et al. (2020) Taiwan \(\leq\)40892 - \(\leq\)316 3.5 7.6345 \(M_w\) 0.07 437.10 \(r_{rup}\) C 19 0.01 5 D50 O A (N, S, R, F, B, AS)
Cremen, Werner, and Baptie (2020) Lancashire + N. Nottinghamshire (UK) 195+192 - 29+48 (0.1*) (2.9*) \(M_w\) (\(M_L\)) 1.5* 7* \(r_{hypo}\) 1 3 0.05 0.2 G O E + M
Hu, Tan, and Zhao (2020) Sagami Bay, Japan 738 (offshore)346, 3775 (onshore) 738 (offshore), 3775 (onshore) 233, 223 (onshore) 4.0 6.8 \(M_w\) 5* 300* \(r_{hypo}\) I, 4 20 0.05 5 D50 1M A (C, F, B)
Jaimes and Garcı́a-Soto (2020) Mexico 366 366 23 5.2 8.2 \(M_w\) 22 400 \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 18 0.01 5 G347 1M B
Kotha et al. (2020) Europe & Mediterranean 18222–9698 - 927–491 3.0 7.4 \(M_w\) 0 545 \(r_{jb}\) (\(r_{epi}\)) I 34 0.01 8 D50 O A
Kowsari et al. (2020) South Iceland 83 - 6 5.1 6.5 \(M_w\) 0* 80* \(r_{jb}\) 2 40 0.05 3 D50 O S
Kuehn et al. (2020) Separate models for Taiwan & Iran 13236 & 2775 - 108 & 480 4* & 3 7.6* & 7.37 \(M_w\) 1* & 2.5 300* & 300 \(r_{jb}\) & \(r_{hypo}\) C & 1 1 0.2 0.2 D50 1M, O A
Lanzano and Luzi (2020) Volcanic areas, Italy 615–550* - 41 3.0 4.9 \(M_w\) (\(M_L\)) 2* 200* \(r_{hypo}\) 3 30 0.025 5 G 1M V
Li et al. (2020) Sichuan-Yunnan (China) + global 250 + 276–250 + 140* - 7 + 22–7 + 10* 6.0 + 6.1 7.9 + 7.68 \(M_w\) 0* 200* \(r_{rup}\) C 21 0.01 10 D50 1M A
Phung, Loh, Chao, and Abrahamson (2020) Taiwan + Japan 3314 + 3376 - 51 + 25 4.5 + 6.5 7.1 + 9.1 \(M_w\) (\(M_L\)) 1 + 26 280 + 345 \(r_{rup}\) C 20 0.01 5 D50 O A (B, F)
Phung, Loh, Chao, Chiou, et al. (2020) Taiwan + other shallow crustal \(\leq\) 11375 + 2040 - \(\leq\) 157 + 30 3.5 + 6.46 7.65 + 7.9 \(M_w\) (\(M_L\)) 0.1* 200* \(r_{rup}\) C 24 0.01 10 D50 O A (N, S, R, HW)
Tusa, Langer, and Azzaro (2020) Mt Etna, Italy 1600 1600 49 3.0 4.8 \(M_L\) 0.5 100 \(r_{hypo}\) 3 21 0.05 4 G 1M V
Boore et al. (2021) Greece 1500–1000* - 150–30* 4.0* 7.0* \(M_w\) 0.1* 300* \(r_{jb}\) C 105 0.01 10 D50 O A (S, R, N)
C. Huang, Tarbali, and Galasso (2021) N. Italy 2427 - 85 4.0 6.4 \(M_w\) 1* 200* \(r_{jb}\) 4 36 0.04 4 G O A (N, T, U)
Gao, Chan, and Lee (2021) S. Taiwan 338 - 61 4.2 7.6 \(M_w\) (\(M_L\)) 3.6 300 \(r_{rup}\), \(r_{hypo}\) for some events 1 27 0.01 5 D50 1M A

List of other ground-motion models

Published ground-motion models for the prediction of PGA and/or response spectral ordinates that were derived by methods other than regression analysis on strong-motion data are listed below in chronological order. Note that deciding on how a model should be categorised is not always straightforward. Therefore, it is recommended to consult the original reference.

continued
Herrmann and Goertz (1981) Eastern North America
Faccioli (1983) Italy
Herrmann and Nuttli (1984) & Nuttli and Herrmann (1987) Eastern North America
Boore and Atkinson (1987) and G. M. Atkinson and Boore (1990) Eastern North America
Toro and McGuire (1987) Eastern North America
Electric Power Research Institute (1988) Eastern North America
Boore and Joyner (1991) Eastern North America
Bungum et al. (1992) Intraplate regions
Midorikawa (1993b) Japan
Electric Power Research Institute (1993b) Central and eastern USA
Savy et al. (1993) Central and eastern USA
Atkinson and Boore (1995) & G. M. Atkinson and Boore (1997a) Eastern North America
Winter (1995) United Kingdom
Frankel et al. (1996) & Electric Power Research Institute (2004 Appendix B) Central and eastern USA
Jonathan (1996) Southern Africa
Wong et al. (1996) Eastern Idaho, USA
G. M. Atkinson and Boore (1997b) Cascadia subduction zone
Hwang and Huo (1997) Eastern USA
Ólafsson and Sigbjörnsson (1999) Iceland
Atkinson and Silva (2000) California
Somerville et al. (2001) Central and eastern USA
Toro and Silva (2001) Central USA
Balendra et al. (2002) Singapore
N. J. Gregor et al. (2002) Cascadia subduction zone
Silva, Gregor, and Darragh (2002) Central and eastern USA
Toro (2002) Central and eastern USA
Megawati, Pan, and Koketsu (2003) Sumatran subduction zone
Electric Power Research Institute (2004) (model clusters) Central and eastern USA
Iyengar and Raghu Kanth (2004) Peninsular India
Zheng and Wong (2004) Southern China
Megawati, Pan, and Koketsu (2005) Sumatran subduction zone
Motazedian and Atkinson (2005) Puerto Rico
Nath, Vyas, Pal, Singh, et al. (2005; Nath, Vyas, Pal, and Sengupta 2005) Sikkim Himalaya
Yun and Park (2005) & Yun (2006) Korea
G. M. Atkinson and Boore (2006) Eastern North America
Böse (2006) Marmara, Turkey
Collins et al. (2006) Intermountain West, USA
Raghu Kanth and Iyengar (2006, 2007) Peninsular India
Convertito et al. (2007) Campania, Italy
Megawati (2007) Hong Kong
Tuluka (2007) African Western Rift Valley
Carvalho (2008) Portugal
Jin, Kang, and Ou (2008)348 Fujian region, China
Liang et al. (2008) Southwest Western Australia
Sokolov et al. (2008) Vrancea, Romania
G. M. Atkinson and Macias (2009) Cascadia subduction zone
Kang and Jin (2009)349 Sichuan region, China
Nath et al. (2009) Guwahati, NE India
Somerville et al. (2009; P. Somerville et al. 2009) Australia
Hamzehloo and Bahoosh (2010) Tehran region, Iran
Megawati and Pan (2010) Sumatran subduction zone
National Disaster Management Authority (2010) Separate models for 7 regions of India
Deif et al. (2011) Aswan area, Egypt
Allen (2012) Southeastern Australia
Hamzehloo and Mahood (2012) East central Iran
Nath et al. (2012) Shillong region, India
Anbazhagan, Kumar, and Sitharam (2013)350 Himalaya
Douglas et al. (2013) Geothermally-induced events
Joshi, Kumar, Mohran, et al. (2013) Kutch region, India
Rietbrock, Strasser, and Edwards (2013) United Kingdom
Yazdani and Kowsari (2013) Northern Iran
Bora et al. (2014) Europe and Middle East
Harbindu, Gupta, and Sharma (2014) Garhwal Himalaya, India
Raghukanth and Kavitha (2014) India (active regions)
Bora et al. (2015) Europe and Middle East
C. Cauzzi, Edwards, et al. (2015) Switzerland (Foreland and Alps)
Drouet and Cotton (2015) & Drouet (2017) French Alps
Gamage (2015) Sri Lanka
Pacific Earthquake Engineering Research Center (2015) Central and eastern North America
Wong et al. (2015) Hawaii
Yenier (2015) and Yenier and Atkinson (2015b) Central and eastern North America
Adhikari and Nath (2016) Darjeeling-Sikkim Himalaya, India
Bommer et al. (2016) Groningen, Netherlands (induced seismicity)
Yazdani, Kowsari, and Amani (2016) Alborz, Iran
Bommer et al. (2017) Groningen, Netherlands (induced seismicity)
Bydlon, Gupta, and Dunham (2017)351 North-central Oklahoma and south-central Kansas
M. D’Amico et al. (2018) Southern Italy
Hassani and Atkinson (2018) California
Jeong and Lee (2018) South Korea
Novakovic, Atkinson, and Assatourians (2018) Oklahoma
Bajaj and Anbazhagan (2019b) Peninsular India
Bajaj and Anbazhagan (2019a) Himalaya
Bydlon, Withers, and Dunham (2019) Oklahoma and Kansas (induced seismicity)
Rietbrock and Edwards (2019) United Kingdom
Tang et al. (2020) Low-to-moderate seismicity regions
Sokolov et al. (2021) Western Saudi Arabia
Jee and Han (2021)352 South Korea
continued
De Natale, Faccioli, and Zollo (1988) Campi Flegrei, Italy
Atkinson (1996) Cascadia
G. M. Atkinson and Silva (1997) California
Gusev et al. (1997) Kamchatka
Sokolov (1997) Northern Caucasus
Sokolov (1998) Caucasus
Raoof, Herrmann, and Malagnini (1999) Southern California
Malagnini and Herrmann (2000) Umbria-Marche, Italy
Malagnini, Herrmann, and Bona (2000) Apennines, Italy
Malagnini, Herrmann, and Koch (2000) Central Europe
Sokolov, Loh, and Wen (2000) Taiwan
Akinci et al. (2001) Erzincan, Turkey
Parvez et al. (2001) Himalaya
Junn, Jo, and Baag (2002) South Korea
Malagnini et al. (2002) Northeastern Italy
Bay et al. (2003) Switzerland
Singh et al. (2003) India
Bodin, Malagnini, and Akinci (2004) Kachchh basin, India
Jeon and Herrmann (2004) Utah and Yellowstone, USA
Halldorsson and Papageorgiou (2005) Intraplate and interplate
Scognamiglio, Malagnini, and Akinci (2005) Eastern Sicily, Italy
Sokolov et al. (2005) Vrancea, Romania
Akinci et al. (2006) Marmara, Turkey
Allen et al. (2006) Southwest Western Australia
Chung (2006) Southwestern Taiwan
Morasca et al. (2006) Western Alps
Malagnini et al. (2007) San Francisco, USA
Meirova et al. (2008) Israel
Zafarani et al. (2008) Iran
Edwards and Rietbrock (2009) Kanto, Tokai and Chubu regions, Japan
Hao and Gaull (2009) Perth, Australia
D’Amico, Akinci, and Malagnini (2012) Taiwan
Òlafsson and Sigbjörnsson (2012) Iceland
Zafarani and Soghrat (2012) Zagros, Iran
Akinci et al. (2013) Western Turkey
Edwards and Fäh (2013a) Switzerland (Foreland and Alps)
Edwards and Fäh (2013b) Europe and Middle East
Akinci et al. (2014) Lake Van region, Turkey
Bernal et al. (2014) Colombia
Galluzzo et al. (2016) Campi Flegrei
Pacific Earthquake Engineering Research Center (2015) Central and eastern North America
Yenier and Atkinson (2015a) California
Pacor et al. (2016) L’Aquila region, Italy
Tao, Tao, and Cui (2016) Sichuan and Yunnan regions, SW China
Bora et al. (2017) Europe and Middle East, Turkey and Italy
Jeong and Lee (2017) South Korea
Boore (2018) Eastern North America
S. D’Amico, Akinci, and Pischiutta (2018) Sicily Channel and surrounding region, S Italy
Ólafsson, Sigbjörnsson, and Rupakhety (2018) South Iceland Seismic Zone
Sokolov and Zahran (2018) Saudi Arabia
Wang, Ren, and Wen (2018) Wenchuan, China
Zandieh, Pezeshk, and Campbell (2018) Worldwide shallow crustal
Tang et al. (2019) South-eastern Australia and south-eastern China
continued
Atkinson (2001) Eastern North America
Abrahamson and Silva (2002) Central and eastern USA
Campbell (2003b) Eastern North America
Atkinson (2005) Cascadia
Tavakoli and Pezeshk (2005) Eastern North America
Douglas, Bungum, and Scherbaum (2006) Southern Norway
Douglas, Bungum, and Scherbaum (2006) Southern Spain
Campbell (2007) Central and eastern USA
Pezeshk, Zandieh, and Tavakoli (2011) Eastern North America
Pacific Earthquake Engineering Research Center (2015) Central and eastern North America
Shahjouei and Pezeshk (2016) Central and eastern North America
Tsereteli, Askan, and Hamzehloo (2016) Georgia (no regression performed)
Pezeshk et al. (2018) Central and eastern North America
Pezeshk, Zandieh, and Haji-Soltani (2021) Gulf Coast, southern USA
continued
Båth (1975) Worldwide
Battis (1981) Eastern North America
Hasegawa, Basham, and Berry (1981) Canada
Ben-Menahem, Vered, and Brooke (1982) Israel
Gaull, Michael-Leiba, and Rynn (1990) Australia (NE and W and SE)
J. Huo, Hu, and Feng (1992) China
Malkawi and Fahmi (1996) Jordan
Al-Homoud and Fandi Amrat (1998) Jordan and Israel
Nguyen and Tran (1999) Vietnam
Y.-X. Yu and Wang (2004) NE Tibet
continued
Dost, Eck, and Haak (2004) Netherlands
Bommer et al. (2006) El Salvador
Atkinson (2008) Eastern North America
Scasserra et al. (2009) Italy
G. M. Atkinson (2009; Atkinson 2010) Hawaii
Gupta (2010) Indo-Burmese subduction zone
P.-S. Lin, Chiou, et al. (2011) Taiwan
Bourne et al. (2015) Groningen, Netherlands
Hassani and Atkinson (2015) Eastern North America
Pacific Earthquake Engineering Research Center (2015) Central and eastern North America
Vuorinen, Tiira, and Lund (2015) Fennoscandian shield
Gülerce, Kargıoğlu, and Abrahamson (2016) Turkey
Gupta, Baker, and Ellsworth (2017) Central and eastern USA
Kaski (2017) & Kaski and Atkinson (2017) Alberta, Canada
Zafarani, Rahpeyma, and Mousavi (2017) Northern Iran
Obaid et al. (2019) Sharjah, United Arab Emirates
Kiuchi, Mooney, and Zahran (2019) Western Saudi Arabia
Zalachoris and Rathje (2019) Texas, Oklahoma, and Kansas
Edwards et al. (2021) Preston New Road, Blackpool, UK
Farajpour and Pezeshk (2021) Central and eastern USA (induced events)
Sokolov et al. (2021) Western Saudi Arabia
continued
Twesigomwe (1997) Modifies coefficients of Krinitzsky, Chang, and Nuttli (1988)
Lee, Anderson, and Zeng (2000) New \(\sigma\) for Abrahamson and Silva (1997), Boore, Joyner, and Fumal (1997), Campbell (1997), Sadigh et al. (1997) and V. W. Lee and Trifunac (1995)
Eberhart-Phillips and McVerry (2003) New terms for McVerry et al. (2000)
Petersen et al. (2004) Modified distance dependence of Youngs et al. (1997) for \(>200\,\mathrm{km}\)
L. Chen (2008) & Chen and Faccioli (2013) New \(\sigma\) for Faccioli, Bianchini, and Villani (2010)
Wang and Takada (2009) Adjustment of Si and Midorikawa (1999, 2000) for stations HKD100 and CHB022
Bradley (2010, 2013) Modified coefficients of B. S.-J. Chiou and Youngs (2008)
Chiou et al. (2010) New terms for B. S.-J. Chiou and Youngs (2008)
J. X. Zhao (2010) & J. X. Zhao and Gerstenberger (2010) New terms for Zhao et al. (2006)
G. M. Atkinson and Boore (2011) New terms for Boore and Atkinson (2008), G. M. Atkinson and Boore (2006) and Atkinson (2008)
Bommer, Akkar, and Drouet (2012) Coefficients for Akkar and Bommer (2010) for 6 periods from \(0.00\) to \(0.05\,\mathrm{s}\)
McVerry and Holden (2014) Modified terms for McVerry et al. (2006)
Pasyanos (2015) Introduces 2D attenuation variations into G. M. Atkinson and Boore (2006)
V. W. Lee, Trifunac, Bulajić, et al. (2016b) Modify V. W. Lee (1995) for Vrancea earthquakes using model of V. W. Lee, Trifunac, Bulajić, et al. (2016a)
Graizer (2017) Modifies Graizer (2016) using more physically justified approach
Skarlatoudis (2017) Modifies Abrahamson, Gregor, and Addo (2016) and Zhao et al. (2006) for inslab Greek earthquakes
Zalachoris and Rathje (2017) Modifies Hassani and Atkinson (2015) for Texas, Oklahoma and Kansas
Abrahamson et al. (2018) Introduces regional terms in Abrahamson, Gregor, and Addo (2016) for Cascadia, Central America, Japan, New Zealand, South America and Taiwan
Graizer (2018) Extends Graizer and Kalkan (2015, 2016) using the NGA-West2 database and adding new terms and more complex modelling353
Gupta and Trifunac (2018a) Modifies Gupta and Trifunac (2018c) for deep-focus Hindu Kush earthquakes
Gupta and Trifunac (2018b) Modifies Gupta and Trifunac (2018c) for Burmese subduction zone earthquakes
Erdem, Boatwright, and Fletcher (2019) Modifies Boore et al. (2013, 2014) for Sacramento-San Joaquin Delta (California)
Gupta and Trifunac (2019) Modifies Gupta and Trifunac (2018c) for National Capital Region (includes Delhi) of India
Sahakian et al. (2019) Introduces additional path terms to Sahakian et al. (2018)
Fülöp et al. (2020) Modifies Graizer (2016) for Fennoscandia (Sweden and Finland)
Kowsari et al. (2020) Modifies for Iceland the coefficients of 4 ground-motion models from other regions using Bayesian inference
continued
Schnabel and Seed (1973) Western North America
Katayama (1982) Japan
Anderson and Lei (1994) Guerrero, Mexico
V. W. Lee, Trifunac, Todorovska, et al. (1995) California
Emami, Iwao, and Harada (1996) Western North America
Anderson (1997) Guerrero, Mexico
Fajfar and Perus (1997) Europe & Middle East
Garcia and Romo (2006) Subduction zones
Pathak, Paul, and Godbole (2006) India
Güllü and Erçelebi (2007) Turkey
Ahmad, El Naggar, and Khan (2008) Europe & Middle East
Günaydın and Günaydın (2008) Northwestern Turkey
Cabalar and Cevik (2009) Turkey
Perus and Fajfar (2009, 2010) Worldwide
Kuehn, Riggelsen, and Scherbaum (2011) Worldwide shallow crustal
Tezcan and Cheng (2012) Worldwide shallow crustal
Hermkes, Kuehn, and Riggelsen (2014) Europe & Middle East
Yerlikaya-Özkurt, Askan, and Weber (2014) Turkey
Gandomi et al. (2016) Iran
Thomas, Pillai, and Pal (2016) Worldwide shallow crustal
Thomas et al. (2016) Worldwide shallow crustal
Derras, Bard, and Cotton (2016) Worldwide shallow crustal and Europe & Middle East
Oth, Miyake, and Bindi (2017) Japan
Dhanya and Raghukanth (2018) Worldwide shallow crustal
Goulet et al. (2018) Central and eastern North America
Hamze-Ziabari and Bakhshpoori (2018) Worldwide shallow crustal
Kaveh, Hamze-Ziabari, and Bakhshpoori (2018) Worldwide shallow crustal
Khosravikia et al. (2018) Texas, Oklahoma and Kansas
Tezcan, Dak Hazirbaba, and Cheng (2018) Western North America
Derakhshani and Foruzan (2019) Worldwide shallow crustal
Dhanya, Sagar, and Raghukanth (2019) Worldwide shallow crustal
Wiszniowski (2019) Legnica-Głogów Copper District, Poland District
Dhanya and Raghukanth (2020) Himalaya
Ghalehjough and Mahinroosta (2020) Iran
Huang et al. (2021) North India
Ji et al. (2021) Worldwide shallow crustal
Kashani et al. (2021) Worldwide shallow crustal
Khosravikia and Clayton (2021) Texas, Oklahoma and Kansas
Raghucharan et al. (2021) Indo-Gangetic Plains (N. India)
continued
Toro, Abrahamson, and Schneider (1997) Central and eastern North America
Electric Power Research Institute (2004, 2013) Central and eastern North America
Petersen et al. (2008, 2014) Western USA
G. M. Atkinson (2011) Canada
Atkinson and Adams (2013) Various regions of Canada
Al Atik and Youngs (2014) Western USA
Coppersmith et al. (2014) Hanford, USA
Bommer et al. (2015) Thyspunt, South Africa
GeoPentech (2015) Diablo Canyon and Palo Verde, USA
Garcı́a-Fernández et al. (2016), Gehl (2017)
& Garcı́a-Fernández et al. (2019) Europe & Middle East
Goulet et al. (2017) Central and eastern USA
Douglas (2018a) Europe & Middle East
Goulet et al. (2018) Central and eastern North America
Phung et al. (2018) Taiwan
de Almeida et al. (2019) SE Brazil
Kowsari et al. (2019) Iran
Weatherill and Cotton (2020) Stable cratonic region of Europe
Weatherill, Kotha, and Cotton (2020) Europe & Middle East
Akkar et al. (2021) Central and eastern North America

General characteristics of GMPEs for intensity measures other than PGA and elastic spectral ordinates

The following table is an updated and extended version of Table 1 of Douglas (2012), where: AI is Arias intensity, CAV is cumulative absolute velocity, FSA is Fourier spectral amplitudes, IE is maximum absolute unit elastic input energy [often expressed in terms of equivalent velocity (Chapman 1999)], ISO is inelastic response spectral ordinates, JMA is Japanese Meterological Agency seismic intensity, MI is macroseismic intensity (these models are often now as intensity prediction equations), MP is mean period (Rathje et al. 2004), PGV is peak ground velocity, PGD is peak ground displacement, RSD is relative significant duration and VH is vertical-to-horizontal response spectral ratio. For consistency with the rest of this report only empirical models are listed [Table 1 of Douglas (2012) included hybrid and simulation-based models as well as empirical GMPEs].

continued
Reference Area H V E \(M_{\mathrm{min}}\) \(M_{\mathrm{max}}\) \(M\) scale \(r_{\mathrm{min}}\) \(r_{\mathrm{max}}\) \(r\) scale S C R M IM
Reference Area H V E \(M_{\mathrm{min}}\) \(M_{\mathrm{max}}\) \(M\) scale \(r_{\mathrm{min}}\) \(r_{\mathrm{max}}\) \(r\) scale S C R M IM
Esteva and Rosenblueth (1964) W. USA 46* - U U U U 15* 450* \(r_{hypo}\) 1 U U A PGV, MI
Orphal and Lahoud (1974) California 140 - 31 4.1 7.0 \(M_L\) 15 350 \(r_{hypo}\) 1 U O A PGV, PGD
Nazarov and Shebalin (1975) Kazakhstan & Kirgizstan U - U U U U U U \(r_{epi}\) 1 - 1 A MI
Trifunac and Brady (1975a),Trifunac (1976a) & Trifunac and Brady (1976) W. USA 181 181 57 3.8 7.7 Mostly \(M_L\) 6354* 400355* \(r_{epi}\) 3 B O A PGV, PGD
Trifunac and Brady (1975b) W. USA 188 188 48 3.8 7.7 Mostly \(M_L\) 6* 400* \(r_{epi}\) 3 B O A AI, RSD
Trifunac (1976b) W. USA 182 182 46 3.8 7.7 Mostly \(M_L\) 6* 400* \(r_{epi}\) 3 B O A FSA
Gürpinar (1977) California 64, 34, 13 - U U U \(M_L\) 28* 70* \(r_{hypo}\) 3 B 1 A PGV, PGD
McGuire (1977) W. USA 34 - 22 5.3 7.6 \(M_L\) 14 125 \(r_{hypo}\) 1 B U A PGV, PGD
Oskorbin (1977) Sakhalin (Russia) U - U U U \(M_s\)356 U U \(r_{hypo}\) 1 - 1 A MI
Dobry, Idriss, and Ng (1978) W. USA 84 - 14 4.7 7.6 \(M_L\) 0.1 130 \(r_{rup}\) 2 B 1 A RSD
R. K. McGuire (1978b) W. USA 70 - 17+* 4.5* 7.7 U357 11* 210* \(r_{hypo}\) 2 B U A PGV, PGD
R. K. McGuire (1978a) W. USA 70 - 17+* 4.5* 7.7 U358 11* 210* \(r_{hypo}\) 1 B U A FSA
K. Sadigh, Power, and Youngs (1978) W. USA U - U U U U U U U U U 1 A PGV, PGD
Trifunac and Lee (1978) W. N. America U U U U U U U U \(r_{epi}\) 3 U U A FSA
McGuire and Barnhard (1979) W. USA 50 - U U U U U U \(r_{rup}\) (\(r_{epi}\) for some) 2 B 1 A RSD
Cornell, Banon, and Shakal (1979) W. USA 70 - U U U \(M_L\) U U \(r_{hypo}\) 1 C U A PGV, PGD, FSA
Båth (1980) Sweden U - U U U U U U \(r_{epi}\) 1 - 1 A MI
Goto, Kameda, and Sugito (1981) Japan 84 - 28 4.3* 7.8* U359 11* 300* \(r_{epi}\) 1, C L 1 A PGV, PGD
Joyner and Boore (1981) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) 2 L 2 A PGV
Campbell (1984) & K.W. Campbell (1988)360 Worldwide U - U \(\geq\) 5 U \(M_L\) for \(M<6.0\) and \(M_s\) otherwise U \(<\)50 \(r_{seis}\) 2 M U A (S, R) PGV
Joyner and Fumal (1984) and Joyner and Fumal (1985) W. N. America 182 - 23 5.0 7.7 \(M_w\) (\(M_L\)) 0.5 370 \(r_{jb}\) C L 2 A PGV
Kamiyama (1984) Japan 192 - U 4.1 7.9 \(M_{JMA}\) 10 310 \(r_{epi}\) I B 1 A RSD
Kawashima, Aizawa, and Takahashi (1984) & Kawashima, Aizawa, and Takahashi (1986) Japan 197 - 90 5.0 7.9 \(M_{\mathrm{JMA}}\) 5* 550* \(r_{epi}\) 3 R 1 A PGV, PGD
Erdik et al. (1985) Turkey U - 114 5.1 7.75 U U U \(r_{epi}\) 1 - 1 A MI
Trifunac and Lee (1985a) W. N. America 438 438 104 U U U U U \(r_{hypo}\) 3, C U U A FSA
Wilson and Keefer (1985) W. USA 30 - 20 5.0 7.4 \(M_w\) 6 130 \(r_{jb}\) 1 A 1 A AI
Woo (1985) UK U - U U U \(M_s\) U U \(r_{hypo}\) 1 - 1 A MI
Jibson (1987) W. USA 31 - 21 5.0 7.4 \(M_w\) 6 130 \(r_{jb}\) 1 A 1 A AI
Gaull (1988) S.W. W. Australia 25+ - 12+ 2.6 6.9 \(M_L\) 2.5 175 \(r_{hypo}\) 1 U O A PGV
Hiehata, Takemura, and Ohta (1988) 3 sites in Tokyo 85 - 27* 4.2* 7.5* \(M_{JMA}\) 40* 400* \(r_{hypo}\) 1 B361 1 A FSA
Huo (1989) W. USA & S. China U - U U U U U U U 1 G 1 A PGV
Sewell (1989) California + 7 other events 112 - 24 5.0 7.7 \(M_w\) (\(M_L\), \(M_s\)) 0.6 211 \(r_{jb}\) (\(r_{epi}\) for some) 2 C 2 A ISO
Campbell (1990) Unknown U - U U U \(M_L\) for \(M<6\), \(M_s\) for \(M\geq 6\) U U \(r_{seis}\) 1 U U A PGV
Gaull, Michael-Leiba, and Rynn (1990) SE Australia U - U U U \(M_s\) U U \(r_{hypo}\) 1 - 1 A MI
Niazi and Bozorgnia (1991) array, Taiwan 236 234 12 3.6 7.8 \(M_L\) (\(M_D\)) for \(M_L<6.6\), else \(M_s\) 3.1362 119.7 \(r_{hypo}\) 1 M 2W A PGV, PGD
Dowrick (1992) New Zealand U - 30 5.0 7.8 \(M_w\) (\(M_L\), \(M_s\)) U U \(r_c\) 1 - 1 A MI
Kamiyama, O’Rourke, and Flores-Berrones (1992) & Kamiyama (1995) Japan 357 - 82 4.1 7.9 \(M_{\mathrm{JMA}}\) 3.4 413.3 \(r_{hypo}\) I B O A PGV, PGD
Theodulidis and Papazachos (1992) Greece+16 foreign 105+16363 - 36+4 4.5 (7.2) 7.0 (7.5) \(M_s\), \(M_w\), \(M_{\mathrm{JMA}}\) 1 (48) 128 (236) \(r_{epi}\) 2 B O A PGV, PGD
Midorikawa (1993a) Japan U - U 6.5 7.8 \(M_w\) U U \(r_{rup}\) C M 1 A PGV
Benouar (1994) Atlas Mountains 123 - 32 4.2 7.45 \(M_s\) U U \(r_{epi}\) 1 - 1 A MI
V. W. Lee, Trifunac, Todorovska, et al. (1995) W. N. America 1926 1926 297 1.7 7.7 Usually \(M_L\) for \(M\leq 6.5\) and \(M_s\) for \(M>6.5\) 2 200+ \(r_{hypo}\) 9, 3 \(\times\) C U 1 A PGV, PGD
Molas and Yamazaki (1995) Japan 2166 - 387 4.1* 7.8* \(M_{\mathrm{JMA}}\) 8* 1000* \(r_{rup}\) for 2 earthquakes, \(r_{hypo}\) otherwise I L O A PGV
Abrahamson and Silva (1996) California with some others U U U 4.7 7.4 \(M_w\) 0.1 220* \(r_{rup}\) 2 G 1M A RSD
(N. N. Ambraseys and Simpson 1996) & (Simpson 1996) Worldwide shallow crustal 90–113 90–113 U–34 6.0 7.6 \(M_s\) 0 15 \(r_{jb}\) 1 L 1 A, R, S VH
Musson and Winter (1996) UK U - U U U \(M_L\) U U \(r_{hypo}\) 1 - 1 A MI
Sabetta and Pugliese (1996) Italy 95 95 17 4.6 6.8 \(M_s\) if \(M_L\) & \(M_s \geq 5.5\) else \(M_L\) 1.5, 1.5 179, 180364 Both \(r_{jb}\) & \(r_{epi}\) 3 L 1 A PGV, AI
Singh, Aman, and Prasad (1996) Himalayas 86 - 5 5.7 7.2 \(m_b\) 33.15 340.97 \(r_{hypo}\) 1 U 1 A PGV
(1996) E China, W China U, U - U, U U, U U, U \(M_s\) U, U U, U \(r_{epi}\) 1 - 1 A MI
G. M. Atkinson and Silva (1997) California 1000 - 43 4.4 7.4 \(M_w\) 1* 200* \(r_{rup}\) 2 G O A FSA
Bakun and Wentworth (1997, 1999) Cen. California 4344 - 22 4.4 6.9 \(M_w\) (\(M_L\)) 0* 600* \(r_{epi}\) 1 - 1 A MI
Campbell (1997), Campbell (2000), Campbell (2001) & Campbell and Bozorgnia (1994) Worldwide 645 225 H:47, V:26 4.7 H:8.0, V:8.1 \(M_w\) 3 60 \(r_{seis}\) 3 G 1 A(S,R,N) PGV
Gregor and Bolt (1997) California 110 110 12 5.4 7.2 \(M_w\) 6* 200* \(r_{slip}\) 2 T, V 1 R, S PGD
Kayen and Mitchell (1997) W. USA 66 - U U U \(M_w\) 1* 100* \(r_{rup}\) 3 G 1 A AI
Shabestari and Yamazaki (1997) Japan 2166 - 387 4.1* 7.8 \(M_{JMA}\) U U \(r_{rup}\) 1 V 2 A JMA
Rathje, Abrahamson, and Bray (1998) California 306 - 20 5.7 7.3 \(M_w\) 0.5* 200* \(r_{rup}\) 2 O 1M A MP
Rinaldis et al. (1998) Italy & Greece 137* - 24* 4.5 7 \(M_s\) or \(M_w\) 7 138 \(r_{epi}\) 2 U O A (N, ST) PGV
Sadigh and Egan (1998) California with 4 foreign 960+4 - 119+2 3.8 7.4 \(M_w\) 0.1 305365 \(r_{rup}\) for some, \(r_{hypo}\) for small ones 2 G U A(R,SN) PGV, PGD
Sarma and Srbulov (1998) Worldwide 690366 - 113 3.9 7.7 \(M_s\) (U) 0 197 \(r_{jb}\), \(r_{epi}\) 2 B 1 A AI
Somerville (1998) 15 mainly W. USA+12 simulated 27 - 13 6.2 7.5 \(M_w\) 0.1 10 \(r_{rup}\) 1 N 1 A PGV
Theodulidis et al. (1998) Kozani-Grevena (Greece) 232367 - \(>\)23 3.1 6.6 \(M_w\) 1 140* \(r_{epi}\) 1 B O A PGV
Chapman (1999) W. N. America 304 - 23 5.0 7.7 \(M_w\) 0.1 189.4 \(r_{jb}\) 3 G 2M A PGV, IE
Dowrick and Rhoades (1999) New Zealand U - 85 5.0 8.2 \(M_w\) 4* 450* \(r_c\) 1 - 1 A (S, R, N) MI
Jiménez, Garcı́a-Fernández, and the GSHAP Ibero-Maghreb Working Group (1999) Portugal U - U U U U U U U 1 - 1 A MI
Ólafsson and Sigbjörnsson (1999) Iceland 88368 - 17 4.0 5.9 \(M_w\) 2 112 \(r_{epi}\) 1 B 1 A RSD
Alavi and Krawinkler (2000) 15 mainly W USA+12 simulated 27 - 13 6.2 7.5 \(M_w\) 0.1 10 \(r_{rup}\) 1 N 1 A PGV
Bommer, Elnashai, and Weir (2000) Europe & Middle East 183 - 43 5.5 7.9 \(M_s\) 3 260 \(r_{jb}\) 3 L 1 A PGV, PGD
(N. Ambraseys and Douglas 2000), Douglas (2001b) & Ambraseys and Douglas (2003) Worldwide 186 183 44 5.83 7.8 \(M_s\) 0 15 \(r_{jb}\) 3; 1 L 1 A; A, N, R, S IE; VH
Hernandez and Cotton (2000) Italy & California 272369 - 40* 3.2 7.4 \(M_L\) for \(M<6\), \(M_s\) otherwise 1 109 \(r_{rup}\) 2 B 1 A RSD
Musson (2000) Turkey U - U U U \(M_s\) U U \(r_{hypo}\) 1 - 1 A MI
Paciello, Rinaldis, and Romeo (2000) Greece & Italy 115 - 18 4.5 U \(M_w\) or \(M_s\) U U \(r_{epi}\) 2 B 1 A (N) PGV, PGD, AI
Si and Midorikawa (1999, 2000) Japan 856 - 21 5.8 8.3 \(M_w\) 0* 280* Both \(r_q\) & \(r_{rup}\) 2 L O A PGV
Hinzen and Oemisch (2001) N Rhine area 4375 - 14 2.9 5.9 \(M_L\) 0* 675* \(r_{epi}\) 1 - 1 A MI
Wu, Shin, and Chang (2001) Taiwan 1941 - 60 4.8 7.6 \(M_w\) (\(M_L\)) 0.05* 400* \(r_{rup}\) (\(r_{epi}\) for some) 1 & I U U A PGV
Chandler and Lam (2002) S China 264 - 76 3.3 8.0 \(M_w\) (\(M_L\)) 1.9 289 \(r_{epi}\) 1 - 1 A MI
N. Gregor, Silva, and Darragh (2002) Shallow crustal worldwide (mainly California) 993 993 68 4.4 7.4 \(M_w\) 0.1 267.3 \(r_{rup}\) 2 U 1M A (S, R/O, T) PGV, PGD
Margaris et al. (2002a) & Margaris et al. (2002b) Greece 744 - 142 4.5 7.0 \(M_w\) 1 150 \(r_{epi}\) 3 B O A PGV, PGD
Tromans and Bommer (2002) Europe 249 - 51 5.5 7.9 \(M_s\) 1 359 \(r_{jb}\) 3 L 2 A PGV, PGD
Zonno and Montaldo (2002) Umbria-Marche 161 - 15 4.5 5.9 \(M_L\) 2* 100* \(r_{epi}\) 2 L 2 N, O PGV, AI
Bakun, Johnston, and Hopper (2003) E N America 14198 - 28 3.7 7.3 \(M_w\) 0* 2000* \(r_{epi}\) 1 - 1 A MI
Boatwright et al. (2003) N California 4028 - 104 3.3 7.1 Mainly \(M_w\), \(M_L\) for some 1* 370* \(r_{hypo}\) 4 U O A PGV
Skarlatoudis et al. (2003) Greece 1000 - 225 4.5 7.0 \(M_w\) (\(M_L\)) 1.5* 150* \(r_{epi}\) 2 U O A (N, ST) PGV, PGD
Travasarou, Bray, and Abrahamson (2003) Mainly W USA 1208 - 75 4.7 7.6 \(M_w\) 0.1* 200* \(r_{rup}\) 3 A 1M A (N, R) AI
Zaré and Memarian (2003) Iran 470 - U 3.0 7.4 Mixed scales U U \(r_{epi}\) 1, 2 - 1 A MI
Atkinson (2004) SE Canada & NE USA U 1700 186 2.1* 5.1* \(m_1\) 7* 2000* \(r_{hypo}\) 1 G 1M A FSA
Bozorgnia and Campbell (2004b) Worldwide 443 439 36370 4.7 7.7 \(M_w\) 2* 60* \(r_{seis}\) 4 G 1 A (S & N, R, T) VH
Bray and Rodriguez-Marek (2004) Worldwide 54 - 13 6.1 7.6 \(M_w\) 0.1 17.6 \(r_{rup}\) 2 N 1M A PGV
Horike and Nishimura (2004) Japan U - U U U \(M_{JMA}\) U U \(r_{hypo}\) U U 1 A PGV
Hwang et al. (2004) Chi-Chi (Taiwan) 221371 - 4 6.2 7.7 \(M_w\) U U \(r_{jb}\) 1 A 2M A AI
Kalkan and Gülkan (2004a) Turkey 96–100 96–100 47 4.2 7.4 \(M_w\) (unspecified scales) 1.2 250 \(r_{jb}\), \(r_{epi}\) for small events 3 L 1 A VH
Lin and Lee (2004) Taiwan U - 41 U U U U U \(r_{rup}\) 1 U 1 A AI
Mezcua, Rueda, and García Blanco (2004) Iberia 375 - 5 4.8 7.9 \(M_w\) 0* U \(r_{epi}\) 1 - 1 A MI
Midorikawa and Ohtake (2004) Japan 3335 - 33 5.5 8.3 \(M_w\) 0* 300* \(r_{rup}\) 2 L 1 A (C, B, F) PGV
Moradi, Mirzaei, and Rezapour (2004) Iran U - 22 U U \(M_s\) U U \(r_{epi}\) 1 - 1 A MI
Pankow and Pechmann (2004) and Pankow and Pechmann (2006) Worldwide extensional regimes 142 - 39 5.1 7.2 \(M_w\) 0 99.4 \(r_{jb}\) 2 G, O 1M NS PGV
Rathje et al. (2004) Worldwide shallow crustal 835 - 44 4.9 7.6 \(M_w\) 0.1* 200* \(r_{rup}\) 3 O 1M A MP
Y.-X. Yu and Wang (2004) NE Tibet U, U - 31 5.0 8.5 \(M_s\) U, U U, U \(r_{epi}\) 1 - 1 A MI
Atkinson (2005) Cascadia - U U 2.5* 6.2* \(m_1\) 20* 600* \(r_{hypo}\) 1 G 1M C, B, F FSA
Bragato and Slejko (2005) E Alps (\(45.6\)\(46.8^{\circ}\)N & \(12\)\(14^{\circ}\)E) 1402 3168 240 2.5 6.3 \(M_L\) 0 130 \(r_{jb}\) & \(r_{epi}\) 1 R O A PGV, AI, FSA
Dowrick and Rhoades (2005) New Zealand U - 89 4.6 (5.2 for B) 8.2 (7.3 for B) \(M_w\) 1* 450* \(r_c\) 1 - 1 A (S, R, N), B MI
Frisenda et al. (2005) NW Italy 6899372 - \(>\)1152 0.0* 5.1373 \(M_L\) 0 300374 \(r_{hypo}\) 2 B 1 A PGV
Garcı́a et al. (2005) Central Mexico 277 277 16 5.2 7.4 \(M_w\) 4* 400* \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 G375 1M B PGV
Gong and Xie (2005) California 266 - 15 5.6* 7.4* \(M_w\) 0* 120* \(r_{jb}\) 3 G 2M A IE
Kostov (2005) Europe & Middle East 967 - U 4 7.8 \(M_s\) 2* 401* \(r_{hypo}\) 1 U 1 A CAV
Liu and Tsai (2005) Taiwan 7907 7907 51 4.05 7.10 \(M_w\) (\(M_L\)) 5* 300* \(r_{hypo}\) 1 M 2M A PGV
McGarr and Fletcher (2005) Central Utah coal-mining areas 72 - 12 0.98 4.2 \(M_w\) (\(M_{CL}\)) 0.5* 10* \(r_{hypo}\) 2 L 2M M PGV
Musson (2005) UK 727 - U U U \(M_L\) U U \(r_{hypo}\) 1 - 1 A MI
Tselentis, Danciu, and Gkika (2005) Greece U - U U U \(M_w\) U U \(r_{epi}\) U A 1M A AI
Wald et al. (2005) California U - U U 5.3* \(M_w\) U U \(r_{jb}\) 1 L U A PGV
Bakun (2006a) S California 3234 - 13 5.6 7.1 \(M_w\) 0* 550* \(r_{hypo}\) 1 - 1 A MI
Bakun (2006b) Basin & Range, USA U - 9 6.1 7.3 \(M_w\) 0* 600* \(r_{hypo}\) 1 - 1 A MI
Bindi et al. (2006) Umbria-Marche 239 - 45 4.0 5.9 \(M_L\) 1* 100* \(r_{epi}\) & \(r_{hypo}\) 4 L 1M NS PGV
Bakun and Scotti (2006) N France, S France 13996, 4373 - 15, 11 4* 5.5* \(M_w\) 0* 400* \(r_{hypo}\) 1 - 1 A MI
Faccioli and Cauzzi (2006) Europe & Middle East 75 - 26 3.8 6.9 \(M_w\) (\(M_L\)) 1.5 71 \(r_{jb}\) (\(r_{epi}\) for \(M_w<5.5\)) 1 - 1 A MI
Gómez-Soberón, Tena-Colunga, and Ordaz (2006) Mexico 1983 - 109 4.5* 8.1* \(M_w\) (\(M_s\) if \(M>6\), \(m_b\) if \(M<6\)) 5* 800* \(r_{hypo}\) (\(r_{rup}\) for some) 1 U 2 F PGD
Hwang (2006) Taiwan U - U U U U U U U U U 1 A AI
Jaimes, Reinoso, and Ordaz (2006) Ciudad Universitaria station, Mexico City 21 - 21 6.0 8.1 \(M_w\) 285 530 \(r_{rup}\) 1 U 1B F FSA
Kanno et al. (2006) Japan+some foreign 3392+377 (shallow) & 8150 (deep) - 73+10 & 111 5.0* (6.1) & 5.5* 8.2* (7.4) & 8.0* \(M_w\) (\(M_{\mathrm{JMA}}\)) 1* (1.5*) & 30* 450* (350*) & 450* \(r_{rup}\) (\(r_{hypo}\) for some) C R 2M A PGV
Kataoka et al. (2006) Japan 5160 - 47 4.8* 6.9* \(M_w\) 1* 200* U 1 U U C PGV, JMA
Kempton and Stewart (2006) Worldwide shallow crustal 1559 - 73 5.0* 7.6* \(M_w\) 0* 200* \(r_{rup}\) C G 1M A RSD
Pousse et al. (2006) Japan 9390376 - U 4.1 7.3 (\(M_w\)) 5* 250* \(r_{hypo}\) (\(r_{rup}\) for some) 5 B 2M A AI, RSD
Stafford (2006) & Stafford, Berrill, and Pettinga (2006) New Zealand + foreign 265–484 - 59–93 5* 7.4* \(M_w\) 0.3* 300* \(r_{rup}\) 3 G 1M A (S/N, R) FSA
Akkar and Bommer (2007a) Europe & Middle East 532 - 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) 3 G 1WM A (N, S, R) PGV
Amiri, Mahdavian, and Dana (2007a) & Amiri, Mahdavian, and Dana (2007b) Alborz and central Iran377 200* 200* 50* 4.5* 7.3* \(M_s\) (\(m_b\)) 5* 400* \(r_{hypo}\) 2 L 1 A PGV
Atkinson and Wald (2007) California, Cen. E US U - U 2.4*, 2.0* 7.8*, 7.8* \(M_w\) 2*, 7* 500*, 1000* \(r_{rup}\) 1 - 1M A MI
Bindi et al. (2007) NW Turkey 4047 4047 528 0.5 5.9 \(M_L\)378 5* 200* \(r_{hypo}\)379 2 L 1M A PGV
Boore and Atkinson (2007) & Boore and Atkinson (2008) Worldwide shallow crustal 1574 - 58 4.27380 7.90381 \(M_w\) 0 280382 \(r_{jb}\) C I50 2M A (N, R, S, U) PGV
Campbell and Bozorgnia (2007), Campbell and Bozorgnia (2008b) & Campbell and Bozorgnia (2008a) Worldwide shallow crustal 1561 - 64 4.27383 7.90384 \(M_w\) 0.07 199.27 \(r_{rup}\) C I50 1M A (N, R, S, HW) PGV, PGD
Danciu and Tselentis (2007a), Danciu and Tselentis (2007b) & Danciu (2006) Greece 335 - 151 4.5 6.9 \(M_w\) 0* 136 \(r_{epi}\) 3 A 1M A (ST, N) PGV, PGD, AI, IE
S. Fukushima, Hayashi, and Yashiro (2007) Japan 8615 - 158 5.0 6.8 \(M_{JMA}\) 18.1 448.4 \(r_{rup}\) 1 V 1 A PGV
Mahdavifar, Jafari, and Zolfaghari (2007) Alborz and central Iran 22 - 19 U U U U U \(r_{hyp}\) 1 U 1 A AI
Abrahamson and Silva (2008) & Abrahamson and Silva (2009) Worldwide shallow crustal 2754 - 135 4.27385 7.9386 \(M_w\) 0.06* 200* \(r_{rup}\) C I50 1M A (N, R, S, HW) PGV
Al-Qaryouti (2008) Dead Sea area 26 - 19 4.0 6.2 \(M_L\) 5.8 330.6 \(r_{epi}\) 1 L 2 A PGV
L. Chen (2008) China, Taiwan and Japan 249 249 55 4.2 7.6 \(M_w\) (\(M_L\), \(M_s\)) 10 & 12 153 & 153 \(r_{epi}\) & \(r_{hypo}\) 2 G & L 2 A PGV
B. S.-J. Chiou and Youngs (2008) Worldwide shallow crustal 1950 - 125 4.265387 7.90388 \(M_w\) 0.2*389 70*390 \(r_{rup}\) C I50 1M A (N, R, S, HW, AS) PGV
Jin, Kang, and Ou (2008) Fujian (China) 1974 1974 94 2.8 4.9 \(M_L\) 13 462 \(r_{epi}\) 1 U O A PGV
Massa et al. (2008) Northern Italy 306 306 82 3.5 & 4.0 6.3 & 6.5 \(M_w\) (\(M_L\)) & \(M_L\) 1* 100* \(r_{epi}\) 3 L 1M A PGV, AI
Mezcua, Garcı́a Blanco, and Rueda (2008) Spain 250 - 149 3.1 5.3 \(M_w\) (\(m_b (L_g)\)) 5* 100* \(r_{hypo}\) 1 U 1 A PGV
Pasolini et al. (2008) Italy 21932 - 470* 4.4* 7.4* \(M_w\) 0* 300* \(r_{epi}\) 1 - O A MI
Snæbjörnsson and Sigbjörnsson (2008) Europe & Middle East 71 - 13 5.0* 7.6* \(M_w\) 0* 100* \(r_{jb}\) 1 U 1 SS RSD
Bindi, Luzi, and Pacor (2009) Italy 241 241 27 4.8 6.9 \(M_w\) 0 190 \(r_{jb}\) (\(r_{epi}\) for small) 3 L, G 1M A (N, S, R) PGV
Bindi, Luzi, et al. (2009) Italy 235 - 27 4.6 6.9 \(M_w\) (\(M_L\)) 0 183 \(r_{jb}\), \(r_{epi}\) 3 L 1M A PGV
Bommer, Stafford, and Alarcón (2009) Worldwide shallow crustal 2406 - 114 4.8 7.9 \(M_w\) 1.5* 100* \(r_{rup}\) C B O A RSD
Lee (2009), Lee and Green (2008) & Lee and Green (2014) W. USA391 324 324 49 5.0 7.6 \(M_w\) 0.1 199.1 \(r_{rup}\) 2 A 1M A AI, MP, RSD
Rupakhety and Sigbjörnsson (2009) South Iceland+others 64+29 - 12 5.02 7.67 \(M_w\) 1 97 \(r_{jb}\) (\(r_{epi}\) for some) 2 L 1 S/O ISO
Sørensen, Stromeyer, and Grünthal (2009) Marmara Sea, Turkey 121195 - 7 5.9 7.4 \(M_w\) 0* 350* \(r_{jb}\), \(r_{epi}\) 1 - 1W A MI
Stafford, Berrill, and Pettinga (2009) New Zealand + foreign 144+241 & 144+200 - 23+41 5.08 7.51 \(M_w\) 0.07 300 \(r_{jb}\) & \(r_{rup}\) 3 L, O, G, A 1M A (S/N, R) AI
Akkar and Bommer (2010) Europe & Middle East 532 - 131 5.0 7.6 \(M_w\) 0 99 \(r_{jb}\) 3 G 1M A (N, S, R) PGV
Akkar and Çağnan (2010) Turkey 433 - 137 5.0 7.6 \(M_w\) 0* 200* \(r_{jb}\) C G 1M A (N, S, R) PGV
Amiri et al. (2009) Alborz and central Iran392 416 - 189 3.2393 7.7 \(M_s\) (\(m_b\)) 5* 400* \(r_{hypo}\) 2 L 1M A AI
Beauval et al. (2010) Sierra of Ecuador 453 - 4 5.3 7.1 \(M_w\) 10* 200* \(r_{hypo}\) 1 - 1 A MI
Bindi et al. (2010) Italy 561 561 107 4.0 6.9 \(M_w\) 1* 100* \(r_{jb}\), \(r_{epi}\) 3 L 1M A PGV
Bozorgnia, Hachem, and Campbell (2010) Worldwide shallow crustal 1561 - 64 4.27 7.90 \(M_w\) 0.07 199.27 \(r_{rup}\) C G 1M A (N, R, S, HW) ISO
Campbell and Bozorgnia (2011) & Campbell and Bozorgnia (2010a) Worldwide shallow crustal 1561 - 64 4.27 7.90 \(M_w\) 0.07 199.27 \(r_{rup}\) C G 1M A (N, R, S, HW) JMA
Campbell and Bozorgnia (2010b) & Campbell and Bozorgnia (2010a) Worldwide shallow crustal 1561 - 64 4.27 7.90 \(M_w\) 0.07 199.27 \(r_{rup}\) C G 1M A (N, R, S, HW) CAV
Chiou et al. (2010)394 S & N California 15684 - U 3* 6* \(M_w\) 5* 200* \(r_{rup}\) C I50 1M A (N, R, S, HW, AS) PGV
Iervolino et al. (2010) Italy 95 - 17 4.6 6.8 \(M_w\) 1.5, 1.5 179, 180 \(r_{jb}\) & \(r_{epi}\) 3 L 1 A PGV, AI
Rajabi et al. (2010) Zagros, Iran 37 - 35 4.1 7.0 \(M_w\) 5 150 \(r_{epi}\) 1, 3 & 4 L 1 A AI
Sørensen, Stromeyer, and Grünthal (2010b) Campania, Italy 2985 - 9 6.3 7.0 \(M_w\) 0* 650* \(r_{jb}\), \(r_{epi}\) 1 - 1W A MI
Sørensen, Stromeyer, and Grünthal (2010a) Vrancea, Romania 4058 - 5 6.4 7.7 \(M_w\) 0* 550* \(r_{jb}\), \(r_{epi}\), \(r_{rup}\) 1 - 1W A MI
Szeliga et al. (2010) India U - 29 4* 8* \(M_w\) (\(m_b\)) 7* 2000* \(r_{hypo}\) 1 - 1M A MI
Boore and Atkinson (2007) & Boore and Atkinson (2008) modified by G. M. Atkinson and Boore (2011) Worldwide shallow crustal 1574 - 58 4.27 7.90395 \(M_w\) 0 280396 \(r_{jb}\) C I50 2M A (N, R, S, U) PGV
Alavi et al. (2011) Worldwide shallow crustal 2252 - U 5.1* 7.9* \(M_w\) 0.2* 350* \(r_{rup}\) C U O A (Rake) PGV, PGD
Anderson and Uchiyama (2011) Guerrero, Mexico 293 293 27 5.05 7.96 \(M_w\) 10* 390* \(r_{rup}\) 1 M, V, V3 O A PGV, PGD
Bindi, Parolai, et al. (2011) Central Asia 6000* - 66 4.6 8.3 \(M_s\) 0.1* 600* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) 1 - 1 A MI
Bommer, Akkar, and Kale (2011) Europe & Middle East 1267 1267 392 4.5 7.6 \(M_w\) 0 100* \(r_{jb}\) 3 G 1M A (N, R, S) VH
De Luca et al. (2011) & De Luca (2011) Italy 725 - U 4.1 6.9 \(M_w\) 0 200 \(r_{jb}\) 5 G 1M A ISO
Emolo, Convertito, and Cantore (2011) Campania-Lucania, Italy 875 - 123 1.5 3.2 \(M_L\) 3 100* \(r_{hypo}\) 2 L 1 A PGV
Ghanat (2011) Worldwide shallow crustal 2690 - 129 4.8 7.9 \(M_w\) 0.2* 200* \(r_{rup}\) C G 1M A RSD
Ghosh and Mahajan (2011) NW Himalaya U - 10 4.3 7.8 \(M_s\) 10* 2000* \(r_{epi}\) 1 - 1 A MI
Gülerce and Abrahamson (2011) Worldwide shallow crustal 2684 2684 127 4.27397 7.9398 \(M_w\) 0.06* 200* \(r_{rup}\) C I50 1M A (N, R, S) VH
Luzi et al. (2011) Italy U - U 4.0* 6.9* \(M_w\) 0* 300* \(r_{jb}\) (\(r_{epi}\) for \(M_w<5.5\)), \(r_{hypo}\) 5 G 1M A (S, N, R) PGV
Rupakhety et al. (2011) Worldwide shallow crustal 93 - 29 5.56 7.6 \(M_w\) 0 74.16 \(r_{jb}\) 1 N 1M A PGV
Allen, Wald, and Worden (2012) Worldwide shallow crustal 13077 - U 5.0 7.9 \(M_w\) 5* 315 \(r_{hypo}\) & \(r_{rup}\) C - 1 A MI
Cui et al. (2012) Sichuan-Yunnan (China) 962 - \(>\)21 4.5 6.5 \(M_s\) 0* 110* \(r_{epi}\) 2 G 1, 1W A PGV
Foulser-Piggott and Stafford (2012) Worldwide shallow crustal 2406 - 114 4.79 7.9 \(M_w\) 0.07 100 \(r_{rup}\) C A 1M A (S/N, R) AI
Gómez-Bernal, Lecea, and Juárez-Garcı́a (2012) Mexico 607 607 17399 6.0 8.1 \(M_w\) 20* 600* \(r_{rup}\) 1 L 2 A (F, B, C) PGV, AI
Lee et al. (2012) Taiwan 6570 - 62 3.93 7.62 \(M_w\) 0.3 205 \(r_{rup}\) C A 1M A (S, N, R) AI
Mohammadnejad et al. (2012) Worldwide shallow crustal 2252 - U 5.2 7.9 \(M_w\) 0.07 366.03 \(r_{rup}\) C I50 O A (R, S, N) PGV, PGD
Nguyen et al. (2012) Northern Vietnam 330 - 53 1.6 4.6 \(M_L\) 5* 500* \(r_{epi}\) 1 L3 1 A PGV
Saffari et al. (2012) Iran 351 - 78 5.0 7.4 \(M_w\) 4 190* \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 3 U 2M A PGV
Abrahamson, Silva, and Kamai (2013, 2014) Worldwide shallow crustal 15750 - 326 3 7.9400 \(M_w\) 0 300 \(r_{rup}\) + others for HW C D50 1M A (S, N, R, HW) PGV
Boore et al. (2013, 2014) Worldwide shallow crustal 15000* - 350* 3.0 7.9401 \(M_w\) 0 400 \(r_{jb}\) C D50 2M A (S, N, R, U) PGV
Campbell and Bozorgnia (2013, 2014) Worldwide shallow crustal 15521 - 322 3.0402 7.9403 \(M_w\) 0* 300* \(r_{rup}\) C D50 1M A (S, R, N, HW) PGV
Chiou and Youngs (2013, 2014) Worldwide shallow crustal 12244 - 300 3.1*404 7.9*405 \(M_w\) 0.3* 400*406 \(r_{rup}\) C D50 1M A (S, R, N, HW) PGV
Crowell et al. (2013) Japan & California 118 118 5 5.3 8.3 \(M_w\) 10* 700* \(r_{hyp}\) 1 L3 1 A PGD
Douglas et al. (2013) Mainly geothermally-related 3968 - 535 1* 4* \(M_w\) (\(M_L\), \(M_D\)) 0* 20* \(r_{hypo}\) 1 G 1M G PGV
Du and Wang (2013) Worldwide shallow crustal 1390 - 62 4.26 7.9 \(M_w\) 0.07 200 \(r_{rup}\) 3 G 1M A (N, R, S) CAV
Ghosh and Mahajan (2013) NW Himalaya U - 10 4.3 7.8 \(M_s\) 0* 1600* \(r_{epi}\) 1 - 1 A MI
Idriss (2013, 2014) Worldwide shallow crustal 2353 - 151 4.5407 7.9408 \(M_w\) 0.2 175 \(r_{rup}\) C D50 1 A PGV
Morikawa and Fujiwara (2013) Japan 21681 - 333 5.5 9.0 \(M_w\) 1* 200 \(r_{rup}\) C V 2W A (C, B, F) PGV
Musson (2013) UK 446 - 161 2.5* 4.3* \(M_w\) U U \(r_{hypo}\) 1 - 1 A MI
Pacific Earthquake Engineering Research Center (2013) Worldwide shallow crustal - \(M_w\) C V 1M A (N, S, R, HW) PGV
Segou and Voulgaris (2013) Europe & Middle East 327 - 164 4.1 6.6 \(M_w\) (\(m_b\)) 1* 150* \(r_{epi}\) 3 I50 O A (S, R, N) PGV
Sharma et al. (2013) Geysers, N. California 5451 - 212 1.3 3.3 \(M_w\) (\(M_D\)) 0.5 20 \(r_{hypo}\) 3 L 1M G PGV
Skarlatoudis et al. (2013) Hellenic Arc (Greece) 743 - 21 4.4 6.7 \(M_w\) (\(m_b\), \(M_L\)) 65* 850* \(r_{hyp}\) 3 D50 1M F, B PGV
Villalobos-Escobar and Castro (2013) Medellı̀n and Aburrà Valley (Colombia) 596 - 17 2.8 6.5 \(M_L\) 10* 290 \(r_{epi}\) I U 1M A PGV
Akkar, Sandıkkaya, and Bommer (2014a, 2014b) Europe & Middle East 1041 - 221 4.0 7.6409 \(M_w\) 0 200 \(r_{jb}\), \(r_{epi}\) & \(r_{hypo}\) C G 1M A (S, N, R) PGV
Akkar, Sandıkkaya, and Ay (2014) Europe & Middle East 1041 - 221 4.0 7.6410 \(M_w\) 0 200 \(r_{jb}\) C G 1M A (S, N, R) VH
Ansary (2014) Himalaya, India R: 229, S: 187 - 150* 2.5* 7.8 U 2* 2000* \(r_{hyp}\) 2 U 1 A PGV, PGD
G. M. Atkinson, Worden, and Wald (2014) California, Cen. E USA U - U 4* 7.5* \(M_w\) 1* 400* \(r_{epi}\) 1 - 1M A MI
Bindi, Massa, et al. (2014b, 2014a) Europe & Middle East 1224, 2126 - 225, 365 4.0 7.6 \(M_w\) 0 300 \(r_{jb}\) (\(r_{epi}\) for \(M_w\leq 5\) and \(r_{epi}\geq 10\)) & \(r_{hypo}\) C, 4 G 1M A (S, N, R) PGV
Bora et al. (2014) Europe & Middle East 1232 - 369 4.0 7.6 \(M_w\) 0* 200* \(r_{jb}\) C G 1M A FSA
Boyd and Cramer (2014) Cen. & E USA 21398* - 1143 2.5* 7.2* \(M_w\) 0* 1500* \(r_{hypo}\) 1 - O A MI
Cheng, Lucchini, and Mollaioli (2014) & Cheng (2013) Worldwide shallow crustal 1550 - 63 4.26 7.9 \(M_w\) 0.1 199.3 \(r_{rup}\) C G 1M A (N, R, S) IE
Chousianitis et al. (2014) Greece 133411 - 37 3.2 6.7 \(M_w\) 1 195 \(r_{epi}\) 4 L 2M A (S/T, N) AI
Derras, Cotton, and Bard (2014) Europe & Middle East 1088 - 320 3.6412 7.6413 \(M_w\) 1414 547415 \(r_{jb}\) C G O A PGV
Foulser-Piggott and Goda (2014) Japan 13703 - 158 5.5 9.0 \(M_w\) 2* 300* \(r_{rup}\) C G 1M A (B) AI, CAV
Ghofrani and Atkinson (2014) Japan \(>1000\) - 6 7.0 9.0 \(M_w\) 30* 1000* \(r_{rup}\) C G O F PGV
Le Goff, Borges, and Bezzeghoud (2014) Mainland Portugal - 25 4.4 6.2 \(M_w\) 5* 800* \(r_{epi}\) 1 - 1 A MI
Rodrı́guez-Pérez (2014) Cen. and S. Mexico 75 (F), 121 (B) - 8 F, 25 B 5.1 (F), 5.0 (B) 8.0 (F), 7.2 (B) \(M_w\) 50* (F), 70* (B) 580* (F), 540* (B) \(r_{rup}\) (\(r_{hypo}\) for \(M_w<6.5\)) 1 G 1M F, B PGV
Yaghmaei-Sabegh, Shoghian, and Sheikh (2014) Iran 286 - 141 3.7 7.7 \(M_w\) 0.6 294 \(r_{rup}\) 4 G 1 A RSD
Atkinson (2015) California U - U 3* 6* \(M_w\) 2* 40 \(r_{hypo}\) 1 G 1M A PGV
Bora et al. (2015) Europe & Middle East 1232 - 369 4.0 7.6 \(M_w\) 0* 200* \(r_{jb}\) C G 1M A FSA
Bozorgnia and Campbell (2016b) Worldwide shallow crustal - 15161 321 3.0416 7.9417 \(M_w\) 0* 500*418 \(r_{rup}\) C V 1M A (R, S, N) PGV
Bozorgnia and Campbell (2016a) Worldwide shallow crustal 15521 15161 321–322 3.0419 7.9420 \(M_w\) 0* 500*421 \(r_{rup}\) C D50 1M A (R, S, N) VH
C. Cauzzi, Faccioli, Vanini, et al. (2015) Worldwide shallow active crustal 1880 - 98 4.5 7.9 \(M_w\) 0* 150* \(r_{rup}\) (\(r_{hypo}\) for \(M_w\leq 5.7\)) C G 2M A (S, N, R) PGV
Emolo et al. (2015) South Korea 11129 - 222 2.0 4.9 \(M_L\) 1.4 600* \(r_{epi}\) I L 1M A PGV, PGD
Foulser-Piggott and Goda (2015) Japan 68567 - 661 5.0 9.0 \(M_w\) 2* 300* \(r_{rup}\) C G 1M A (R, S, N, F, B) AI, CAV
Jaimes, Ramirez-Gaytán, and Reinoso (2015) Ciudad Universitaria, Mexico City422 22 - 22 5.2 7.4 \(M_w\) 103 464 \(r_{rup}\) for \(M_w >6.5\), \(r_{hypo}\) for \(M_w\leq 6.5\) 1 G 1B B PGV
Kale et al. (2015) Turkey & Iran 1198 - 313 4 7.6423 \(M_w\) 0 200 \(r_{jb}\) C G 1MW A (S, N, R) PGV
Kuehn and Scherbaum (2015) Europe & Middle East 835 - 279 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\) C G O A (R, N, S) PGV
Leonard (2015) Australia MI
Melgar et al. (2015) Worldwide 1321 1321 10 5.9 9.1 \(M_w\) 10* 1000* \(r_{hyp}\) 1 V3 1 A PGD
Pacific Earthquake Engineering Research Center (2015) — Al Noman and Cramer Cen. and E. N. America + foreign 6061424 - 78425 2.5 7.6426 \(M_w\) 1* 2000* \(r_{rup}\) C D50 2M A (R, S, U) PGV
Pacific Earthquake Engineering Research Center (2015) — Graizer Cen. and E. USA 5026 - 48 4.0 6.8427 \(M_w\) 4428 1000* \(r_{rup}\) C D50 O A PGV
Pacific Earthquake Engineering Research Center (2015) — Hollenback et al. Cen. and E. USA U - U 2.5429 6.8430 \(M_w\) 0 300 \(r_{rup}\) C D50 O A FAS
Ullah et al. (2015) Central Asia 6000* - 66 4.6 8.3 \(M_s\) 0.1* 600* \(r_{epi}\) 1 - 1 A MI
Vacareanu, Iancovici, et al. (2015) Vrancea, Romania 9718 - 6 6.0 7.7 \(M_w\) 0* 1000* \(r_{epi}\) 1 - 1M A MI
Yaghmaei-Sabegh (2015) Iran 575 - 40 3.7 7.7 \(M_w\) 0.7 293 \(r_{jb}\) 3 O 1 A MP
Afshari and Stewart (2016) Worldwide shallow crustal 11195 - 3.0 7.9 \(M_w\) 0* 300* \(r_{rup}\) C G 1M A (R, S, N, U) RSD
Alıcı and Sucuoğlu (2016) Worldwide shallow crustal 1442 - 104 5.50 7.90 \(M_w\) 0.4 189.7 \(r_{epi}\) 2 G 1M A (N, R, S) IE
Galluzzo et al. (2016) Campi Flegrei, Italy 120* - 20 0.8 2.4 \(M_w\) 1* 12 \(r_{hypo}\) 1 L 1 A PGV
Ibrahim et al. (2016) Japan 409 - 20 6.0 9.1 \(M_w\) 10* & 10* 300* & 550* \(r_{rup}\) & \(r_q\) 1 V 2 A (C, F, B) PGV, PGD
Kaveh, Bakhshpoori, and Hamzeh-Ziabari (2016) Worldwide shallow crustal 2252 - U 5.2 7.9 \(M_w\) 0.07 360 \(r_{rup}\) C U O A PGV, PGD
S. R. Kotha, Bindi, and Cotton (2016a, 2016b) Europe & Middle East 1251 - U 4 7.6 \(M_w\) 0* 300*431 \(r_{jb}\) (\(r_{epi}\) for some \(M_w\leq 5\)) C G O A PGV
Lanzano et al. (2016) Po Plain & NE Italy 2489 - 94 4.0 6.4 \(M_w\) 0* 200* \(r_{jb}\) 5 G 1M A (R, N, U) PGV
V. W. Lee, Trifunac, Bulajić, et al. (2016a) Serbia (Vrancea events) 91 91 4 6.4 7.4 \(M_w\) 84.7 554.2 \(r_{hypo}\) 1 B 1 A FSA
Nekooei and Babaei (2016) Iran 484 - \(\geq 25\) 4.5 7.4 \(M_w\) 1 149 \(r_{rup}\) C L, G 1 A PGV
Shoushtari, Adnan, and Zare (2016) Malaysia, Japan and Iran 531 - 13 5.0 7.7 \(M_w\) 120* 1400* \(r_{hypo}\) 4 G 1 B PGV
Stewart et al. (2016) Worldwide shallow crustal - 17089 U 3 7.9432 \(M_w\) 0 300 \(r_{jb}\) C V 2M A (R, S, N, U) PGV
Tusa and Langer (2016) Mount Etna, Italy 1158 (shallow), 1957 (deep) 1158 (shallow), 1957 (deep) 38 (shallow), 53 (deep) 3.0 4.3 (shallow), 4.8 (deep) \(M_L\) 0.5 100 \(r_{epi}\) 3 G, V 1 V PGV
Çağnan et al. (2017a) Europe & Middle East - 1041 221 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\) C V 1M A (S, N, R) PGV
Cameletti et al. (2017) Italy 6723 - 1917 2 5.9 \(M_L\) U U \(r_{hypo}\) 1 - O A MI
Cremen, Gupta, and Baker (2017) Cen. and E. USA 104023 - 972 3.0 5.8 \(M_w\) 0* \(>50\) \(r_{epi}\) 1 - 1 A (E/G/M/W) MI
Du (2017) Worldwide shallow crustal 8491 - 263 3.05 7.9 \(M_w\) 0.1 499.5 \(r_{rup}\) C V 1M A MP
Derras, Bard, and Cotton (2017) Japan 977 - 214 3.7 6.9 \(M_w\) 3.65 440.63 \(r_{jb}\) C \(\times\) C G O A PGV
Garcı́a-Soto and Jaimes (2017) Mexico (Pacific coast) 418 418 40 5.0 8.0 \(M_w\) 17 400 \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 V 1M F PGV
Gupta and Trifunac (2017) W Himalaya & NE India 365 365 113 3.0 6.9 \(M_s\) or \(M_w\) for \(M\geq 6.5\) & \(m_b\), \(M_L\) or \(M_s\) for \(M<6.5\) 8* 500* \(r_{hypo}\) 9 B 1 A FSA
Haji-Soltani et al. (2017) Gulf Coast (USA) 943 943 30 3.40 5.74 \(M_w\) 18* 1000* \(r_{rup}\) C D50 1M A VH
Hassani et al. (2017) Iran433 806 - 330 4.0 7.3 \(M_w\) (\(m_b\), \(M_s\), \(M_L\)) 1* 280* \(r_{epi}\) 3 L 1M A ISO
Oth, Miyake, and Bindi (2017) Japan 118102 - 1905 2.7 7.2 \(M_w\) 0.8* 250 \(r_{hypo}\) (\(r_{rup}\) for \(M_w\geq 6\)) 1 G 1M A JMA
Sandıkkaya and Akkar (2017) Europe & Middle East 1041 - 221 4.0 7.6 \(M_w\) 0 200 \(r_{jb}\), \(r_{epi}\) & \(r_{hypo}\) C G 1M A (S, N, R) AI, CAV, RSD
Sedaghati and Pezeshk (2017) Iran 688 688 152 4.7 7.4 \(M_w\) 1* 250* \(r_{jb}\) C 1M G A PGV
Ameur, Derras, and Zendagui (2018) Worldwide shallow crustal 2335 - 137 3.2434 7.9435 \(M_w\) 0.01436 358437 \(r_{jb}\) C G O A PGV
Baumont et al. (2018) France + Italy U - 30 + 11 3.6 7.1 \(M_w\) U U \(r_{hypo}\) 1 - 1M A MI
Bayless and Abrahamson (2018, 2019) Worldwide shallow crustal 13346 - 232 4.0* 7.9* \(M_w\) 0.2* 300* \(r_{rup}\) C Q 1M A (N) FSA
Chousianitis et al. (2018) Greece 652 - 72 4.0* 6.8 \(M_w\) 0.3* 200* \(r_{epi}\) 2 G 2M A (R/S, N) PGV, MP, CAV
Javan-Emrooz, Eskandari-Ghadi, and Mirzaei (2018) N Iran, E Turkey, Armenia & Georgia 463 463 107 4.5 7.4 \(M_w\) (\(m_b\)) 2 100 \(r_{epi}\) 2 V O A (R, S) PGV, PGD
Mahani and Kao (2018) Graham and Septimus areas (BC, Canada) U, U - 129, 90 1.5, 1.5 3.8, 3.0 \(M_L\) 2.3, 1.6 19, 42 \(r_{hypo}\) 1 G 1M W PGV, FAS
Sharma and Convertito (2018) The Geysers, USA 261711 - 10974 0.7 3.3 \(M_w\) (\(M_D\)) 0.1 73 \(r_{hypo}\) I L 1M G PGV
Shoushtari, Adnan, and Zare (2018) Japan + Malay Peninsula 651 + 77 - 11 + 14 5.0 + 6.7 9.1 + 9.0 \(M_w\) 120* + 500* 1300* + 1000* \(r_{hypo}\) 4 G 1 F PGV
Yaghmaei-Sabegh (2018) Iran 560 - 113 4.1 7.4 \(M_w\) 1 405 \(r_{epi}\) 1 - 1 A MI
Zafarani et al. (2018) Iran 1551 - 200 4.0 7.3 \(M_w\) (\(M_L\)) 0.6* 200* \(r_{jb}\) (\(r_{epi}\)) 4 G 1M A (R, S, U) VH
Ahmadzadeh, Doloei, and Zafarani (2019) Iran 111438 - 31 5.1 7.4 \(M_w\) 2.51 125.52439 \(r_{epi}\) 1 - 1 A MI
Bindi et al. (2019) Europe & Middle East 2767–18859 - U–2179 3.5 7.8 \(M_w\) (\(M_L\)) 1.5* 300* \(r_{hypo}\) I G 1M A FSA
Campbell and Bozorgnia (2019) Worldwide shallow crustal 15521 - 322 3.0440 7.9441 \(M_w\) 0* 300* \(r_{rup}\) C G 1M A (S, R, N, HW) AI, CAV
Darzi et al. (2019) Iran 1350 - 370 4.5 7.4 \(M_w\) (\(M_s\), \(m_b\)) 1* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) & \(r_{rup}\) 3 G 2M A (S, R, U) PGV
Huang and Galasso (2019) Italy 7843 - 233 4.0 6.9 \(M_w\) 1* 250* \(r_{jb}\) 3 D50 O A (R, S, N) PGV
Lanzano, Luzi, Pacor, Felicetta, et al. (2019; Lanzano, Luzi, Pacor, Puglia, et al. 2019) Italy + 12 foreign events 4965 + 823442 - 144 + 12 3.5 + 6.07 6.87 + 8.0 \(M_w\) 0* 200* \(r_{jb}\) (\(r_{epi}\) for \(M<5.5\)), \(r_{rup}\) (\(r_{hypo}\) for \(M<5.5\)) C D50 1M A (N, R, S) PGV
Podili and Raghukanth (2019) Japan 96880 - 1340 5.0 9.0 \(M_w\) 5 350 \(r_{rup}\) (\(r_{hypo}\) for some) C A 2 A (S, R, N, U, B, C) AI, CAV, PGV, PGD, RSD, VH
Quadros, Assump cão, and Trindade de Souza (2019) Brazil 497 - 20 3.5 6.2 \(m_b\) 5* 720* \(r_{hypo}\) 1 - 1 A MI
Ruhl et al. (2019) Worldwide 3433 3433 29 6.0 9.0 \(M_w\) 7* 1000* \(r_{hyp}\) 1 V3 1W A PGD
Xu et al. (2019) Taiwan (shallow + deep) 17171 + 7496 - 310 4.8 7.9 \(M_w\) 1* 200* \(r_{epi}\) C + 5 G 1M C, B CAV
Zolfaghari and Darzi (2019b) Iran - 1350 370 4.5 7.4 \(M_w\) (\(M_s\), \(m_b\)) 1* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{jb}\) & \(r_{rup}\) 3 - 2M A (S, R, U) PGV
Zolfaghari and Darzi (2019a) Iran 1350 1350 370 4.5 7.4 \(M_w\) 1.5* 200* \(r_{epi}\), \(r_{hypo}\), \(r_{rup}\), \(r_{jb}\) 3 G 1M A (R, S) VH
Bullock et al. (2020) Worldwide shallow crustal 10093 - U 3.0* 7.9* \(M_w\) 0* 300* \(r_{rup}\) C D50 2M A (R, S, N) CAV
Chao et al. (2020) Taiwan 40892 - 316 3.5 7.6443 \(M_w\) 0.07 437.10 \(r_{rup}\) C D50 O A (N, S, R, F, B, AS) PGV, PGD
Cremen, Werner, and Baptie (2020) Lancashire + N. Nottinghamshire (UK) 195+192 - 29+48 (0.1*) (2.9*) \(M_w\) (\(M_L\)) 1.5* 7* \(r_{hypo}\) 1 G O E + M PGV
Huang, Tarbali, and Galasso (2020) Italy 5703 - 138 4.0 6.5 \(M_w\) 1* 220* \(r_{jb}\) (\(r_epi\)) 3 D50 O A (R, S, N) RSD, CAV, AI
Jaimes and Garcı́a-Soto (2020) Mexico 366 366 23 5.2 8.2 \(M_w\) 22 400 \(r_{rup}\) for \(M_w>6.5\), \(r_{hypo}\) otherwise 1 G444 1M B PGV, VH
Kotha et al. (2020) Europe & Mediterranean 18222 - 927 3.0 7.4 \(M_w\) 0 545 \(r_{jb}\) (\(r_{epi}\)) I D50 O A PGV
Lanzano and Luzi (2020) Volcanic areas, Italy 615 - 41 3.0 4.9 \(M_w\) (\(M_L\)) 2* 200* \(r_{hypo}\) 3 G 1M V PGV
Matsu’ura et al. (2020) Japan 33788 - 78 5.4 8.7 \(M_w\) 6* 1000* \(r_{hypo}\) C U O F, I, C JMA
Tusa, Langer, and Azzaro (2020) Mt Etna, Italy 1600 1600 49 3.0 4.8 \(M_L\) 0.5 100 \(r_{hypo}\) 3 G 1M V PGV
Abdelfattah et al. (2021) Jazan (Saudi Arabia) 638 - 72 2.0 5.1 \(M_L\) 4 200* \(r_{hypo}\) 1 A 1 A PGV
Bahrampouri, Rodriguez-Marek, and Green (2021a) Japan 17077 crustal, 21159 subduction - 984 crustal, 1028 subduction 4 7.5* crustal, 9.0* subduction \(M_w\) 2* 1000* \(r_{rup}\) C G 1M C, (F, I) AI
Bahrampouri, Rodriguez-Marek, and Green (2021b) Japan 22111 crustal, 74820 subduction - 873 crustal, 2249 subduction 4 7.5* crustal, 9.0* subduction \(M_w\) 2* 500* \(r_{rup}\) C G 1M C, (F, I) RSD
Boore et al. (2021) Greece 1500* - 150* 4.0* 7.0* \(M_w\) 0.1* 300* \(r_{jb}\) C D50 O A (S, R, N) PGV
Fang et al. (2021) Worldwide 1434 1434 22 6.0 9.1 \(M_w\) 10* 1000* \(r_{hypo}\) 1 V3 1 A PGV
C. Huang, Tarbali, and Galasso (2021) N. Italy 2427 - 85 4.0 6.4 \(M_w\) 1* 200* \(r_{jb}\) 4 G O A (N, T, U) ISO
Jaimes and Garcı́a-Soto (2021) Mexico 418, 366 - 40, 23 5.0, 5.2 8.0, 8.2 \(M_w\) 17, 22 400, 400 \(r_{rup}\) 1 Q 1M F, B RSD
Lavrentiadis, Abrahamson, and Kuehn (2021) California 8916 - 188 3.1 7.3 \(M_w\) 0.1 300 \(r_{rup}\) C G O A FSA

Abdelfattah, A. K., A. Al-amri, K. Abdelrahman, M. Fnais, and S. Qaysi. 2021. “Attenuation Relationships of Peak Ground Motions in the Jazan Region.” Arabian Journal of Geosciences 14 (139). https://doi.org/10.1007/s12517-020-06442-z.

Abrahamson, N. A., and J. J. Litehiser. 1989. “Attenuation of Vertical Peak Acceleration.” Bulletin of the Seismological Society of America 79 (3): 549–80.

Abrahamson, N. A., and K. M. Shedlock. 1997. “Overview.” Seismological Research Letters 68 (1): 9–23.

Abrahamson, N. A., and W. J. Silva. 1993. “Attenuation of Long Period Strong Ground Motions.” In Proceedings of Conference of American Society of Mechanical Engineers.

———. 1996. “Empirical Ground Motion Models.”

———. 1997. “Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes.” Seismological Research Letters 68 (1): 94–127.

———. 2002. “Hybrid Model — Empirical Attenuation Relations for Central and Eastern U.S. Hard and Soft Rock and Deep Soil Site Conditions.” In CEUS Ground Motion Project Workshop.

Abrahamson, N. A., W. J. Silva, and R. Kamai. 2013. “Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set.” 2013/04. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 2014. “Summary of the ASK14 Ground Motion Relation for Active Crustal Regions.” Earthquake Spectra 30 (3): 1025–55. https://doi.org/10.1193/070913EQS198M.

Abrahamson, N. A., and R. R. Youngs. 1992. “A Stable Algorithm for Regression Analyses Using the Random Effects Model.” Bulletin of the Seismological Society of America 82 (1): 505–10.

Abrahamson, N., N. Gregor, and K. Addo. 2016. “BC Hydro Ground Motion Prediction Equations for Subduction Earthquakes.” Earthquake Spectra 32 (1): 23–44. https://doi.org/10.1193/051712EQS188MR.

Abrahamson, N., N. Kuehn, Z. Gulerce, N. Gregor, Y. Bozorgnia, G. Parker, J. Stewart, et al. 2018. “Update of the BC Hydro Subduction Ground-Motion Model Using the NGA-Subduction Dataset.” 2018/02. Pacific Earthquake Engineering Research Center.

Abrahamson, N., and W. Silva. 2008. “Summary of the Abrahamson & Silva NGA Ground-Motion Relations.” Earthquake Spectra 24 (1): 67–97. https://doi.org/10.1193/1.2924360.

———. 2009. “Errata for ‘Summary of the Abrahamson and Silva NGA Ground-Motion Relations’ by Abrahamson, N. A. And W. J. Silva.” Published on PEER NGA website.

Ader, T., M. Chendorain, M. Free, T. Saarno, P. Heikkinen, P. E. Malin, P. Leary, et al. 2019. “Setting up Traffic Light System Thresholds for Geothermal Stimulation in Helsinki, Finland.” In 2019 Seced Conference.

Adhikari, M. D., and S. K. Nath. 2016. “Site-Specific Next Generation Ground Motion Prediction Models for Darjeeling-Sikkim Himalaya Using Strong Motion Seismometry.” Journal of the Indian Geophysical Union 20 (2): 151–70.

Adnan, A., Hendriyawan, A. Marto, and M. Irsyam. 2005. “Selection and Development of Appropriate Attenuation Relationship for Peninsular Malaysia.” In Proceedings of the Malaysian Science Technology Congress. Kuala Lumpur, Malaysia.

Adnan, A., and M. Suhatril. 2009. “Derivation of Attenuation Equations for Distant Earthquake (Sic) Suitable for Malaysia.” VOT 78266. Pusat Pengurusan Penyelidikan, Universiti Teknologi Malaysia.

Afshari, K., and J. P. Stewart. 2016. “Physically Parameterized Prediction Equations for Significant Duration in Active Crustal Regions.” Earthquake Spectra 32 (4): 2057–81. https://doi.org/10.1193/063015EQS106M.

Aghabarati, H., and M. Tehranizadeh. 2008. “Near-Source Attenuation Relationship for the Geometric Mean Horizontal Component of Peak Ground Acceleration and Acceleration Response Spectra.” Asian Journal of Civil Engineering (Building and Housing) 9 (3): 261–90.

———. 2009. “Near-Source Ground Motion Attenuation Relationship for PGA and PSA of the Vertical and Horizontal Components.” Bulletin of Earthquake Engineering 7 (3): 609–35. https://doi.org/10.1007/s10518-009-9114-9.

Ahmad, I., M. H. El Naggar, and A. N. Khan. 2008. “Neural Network Based Attenuation of Strong Motion Peaks in Europe.” Journal of Earthquake Engineering 12 (5): 663–80. https://doi.org/10.1080/13632460701758570.

Ahmadzadeh, S., G. J. Doloei, and H. Zafarani. 2019. “New Intensity Prediction Equation for Iran.” Journal of Seismology. https://doi.org/10.1007/s10950-019-09882-7.

Ahorner, L., and W. Rosenhauer. 1975. “Probability Distribution of Earthquake Accelerations for the Sites in Western Germany.” In Proceedings of Fifth European Conference on Earthquake Engineering.

Akinci, A., S. D’Amico, L. Malagnini, and A. Mercuri. 2013. “Scaling Earthquake Ground Motions in Western Anatolia, Turkey.” Physics and Chemistry of the Earth, Parts A/B/C 63: 124–35. https://doi.org/10.1016/j.pce.2013.04.013.

Akinci, A., L. Malagnini, R. B. Herrmann, R. Gok, and M. B. Sørensen. 2006. “Ground Motion Scaling in the Marmara Region, Turkey.” Geophysical Journal International 166 (2): 635–51. https://doi.org/10.1111/j.1365-246X.2006.02971.x.

Akinci, A., L. Malagnini, R. B. Herrmann, and D. Kalafat. 2014. “High-Frequency Attenuation in the Lake Van Region, Eastern Turkey.” Bulletin of the Seismological Society of America 104 (3): 1400–1409. https://doi.org/10.1785/0120130102.

Akinci, A., L. Malagnini, R. B. Herrmann, N. A. Pino, L. Scognamiglio, and H. Eyidogan. 2001. “High-Frequency Ground Motion in the Erzincan Region, Turkey: Inferences from Small Earthquakes.” Bulletin of the Seismological Society of America 91 (6): 1446–55.

Akkar, S., and J. J. Bommer. 2007a. “Prediction of Elastic Displacement Response Spectra in Europe and the Middle East.” Earthquake Engineering and Structural Dynamics 36 (10): 1275–1301. https://doi.org/10.1002/eqe.679.

———. 2010. “Empirical Equations for the Prediction of PGA, PGV and Spectral Accelerations in Europe, the Mediterranean Region and the Middle East.” Seismological Research Letters 81 (2): 195–206.

———. 2006. “Influence of Long-Period Filter Cut-Off on Elastic Spectral Displacements.” Earthquake Engineering and Structural Dynamics 35 (9): 1145–65.

———. 2007b. “Empirical Prediction Equations for Peak Ground Velocity Derived from Strong-Motion Records from Europe and the Middle East.” Bulletin of the Seismological Society of America 97 (2): 511–30. https://doi.org/10.1785/0120060141.

Akkar, S., and Z. Çağnan. 2010. “A Local Ground-Motion Predictive Model for Turkey and Its Comparison with Other Regional and Global Ground-Motion Models.” Bulletin of the Seismological Society of America 100 (6): 2978–95.

Akkar, S., Z. Çağnan, E. Yenier, Ö Erdoğan, A. Sandıkkaya, and P. Gülkan. 2010. “The Recently Compiled Turkish Strong-Motion Database: Preliminary Investigation for Seismological Parameters.” Journal of Seismology 14 (3): 457–79. https://doi.org/10.1007/s10950-009-9176-9.

Akkar, S., Ö Kale, M. A. Sandıkkaya, and E. Yenier. 2021. “A Procedure to Develop a Backbone Ground-Motion Model: A Case Study for Its Implementation.” Earthquake Spectra 37 (4): 2523–44. https://doi.org/10.1177/87552930211014541.

Akkar, S., M. A. Sandıkkaya, and B. Ö Ay. 2014. “Compatible Ground Motion Prediction Equations for Damping Scaling Factors and Vertical-to-Horizontal Spectral Amplitude Ratios for the Broader Europe Region.” Bulletin of Earthquake Engineering 12: 517–47. https://doi.org/10.1007/s10518-013-9537-1.

Akkar, S., M. A. Sandıkkaya, and J. J. Bommer. 2014a. “Empirical Ground-Motion Models for Point- and Extended-Source Crustal Earthquake Scenarios in Europe and the Middle East.” Bulletin of Earthquake Engineering 12 (1): 359–87. https://doi.org/10.1007/s10518-013-9461-4.

———. 2014b. “Erratum to: Empirical Ground-Motion Models for Point- and Extended-Source Crustal Earthquake Scenarios in Europe and the Middle East.” Bulletin of Earthquake Engineering 12 (1): 389–90. https://doi.org/10.1007/s10518-013-9508-6.

Akkar, S., M. A. Sandıkkaya, M. Şenyurt, A. S. Azari, B. Ö Ay, P. Traversa, J. Douglas, et al. 2014. “Reference Database for Seismic Ground-Motion in Europe (RESORCE).” Bulletin of Earthquake Engineering 12 (1): 311–39. https://doi.org/10.1007/s10518-013-9506-8.

Akyol, N., and Ö Karagöz. 2009. “Empirical Attenuation Relationships for Western Anatolia, Turkey.” Turkish Journal of Earth Sciences 18: 351–82. https://doi.org/10.3906/yer-0705-2.

Alarcón, J. E. 2003. “Relaciones de Atenuación a Partir de Espectros de Respuesta Para Colombia.” In Proceedings of the Second Colombian Conference on Earthquake Engineering.

———. 2007. “Estimation of Duration, Number of Cycles, Peak Ground Velocity, Peak Ground Acceleration and Spectral Ordinates for Engineering Design.” PhD thesis, University of London.

Al Atik, L., and R. R. Youngs. 2014. “Epistemic Uncertainty for NGA-West2 Models.” Earthquake Spectra 30 (3): 1301–18. https://doi.org/10.1193/062813EQS173M.

Alavi, A. H., A. H. Gandomi, M. Modaresnezhad, and M. Mousavi. 2011. “New Ground-Motion Prediction Equations Using Multi Expression Programing.” Journal of Earthquake Engineering 15 (4): 511–36. https://doi.org/10.1080/13632469.2010.526752.

Alavi, B., and H. Krawinkler. 2000. “Consideration of Near-Fault Ground Motion Effects in Seismic Design.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Alchalbi, A., G. Costa, and P. Suhadolc. 2003. “Strong Motion Records from Syria: A Preliminary Analysis.” In Skopje Earthquake 40 Years of European Earthquake Engineering (SE-40EEE).

Alfaro, C. S., A. S. Kiremidjian, and R. A. White. 1990. “Seismic Zoning and Ground Motion Parameters for El Salvador.” 93. The John A. Blume Earthquake Engineering Center, Stanford University.

Algermissen, S. T., S. L. Hansen, and P. C. Thenhaus. 1988. “Seismic Hazard Evaluation for El Salvador.” Report for the US Agency for International Development.

Al-Homoud, A. S., and A.-Q. Fandi Amrat. 1998. “Comparison Between Recorded and Derived Horizontal Peak Ground Accelerations in Jordan.” Natural Hazards 17: 101–15.

Alıcı, F. S., and H. Sucuoğlu. 2016. “Prediction of Input Energy Spectrum: Attenuation Models and Velocity Spectrum Scaling.” Earthquake Engineering and Structural Dynamics 45 (13): 2137–61. https://doi.org/10.1002/eqe.2749.

Allen, T. I. 2012. “Stochastic Ground-Motion Prediction Equations for Southeastern Australian Earthquakes Using Updated Source and Attenuation Parameters.” 2012/69. Geoscience Australia, Canberra.

Allen, T. I., T. Dhu, P. R. Cummins, and J. F. Schneider. 2006. “Empirical Attenuation of Ground-Motion Spectral Amplitudes in Southwestern Western Australia.” Bulletin of the Seismological Society of America 96 (2): 572–85.

Allen, T. I., D. J. Wald, and C. B. Worden. 2012. “Intensity Attenuation for Active Crustal Regions.” Journal of Seismology 16 (3): 409–33. https://doi.org/10.1007/s10950-012-9278-7.

Al-Qaryouti, M. Y. 2008. “Attenuation Relations of Peak Ground Acceleration and Velocity in the Southern Dead Sea Transform Region.” Arabian Journal of Geosciences 1 (2): 111–17. https://doi.org/10.1007/s12517-008-0010-4.

Aman, A., U. K. Singh, and R. P. Singh. 1995. “A New Empirical Relation for Strong Seismic Ground Motion for the Himalayan Region.” Current Science 69 (9): 772–77.

Ambraseys, N. 1975. “Ground Motions in the Near Field of Small-Magnitude Earthquakes.” In Proceedings of the Commission on the Safety of Nuclear Installations, Organisation of Economic Cooperation in Europe, 1:113–36. Paris.

Ambraseys, N., and J. Douglas. 2000. “Reappraisal of the Effect of Vertical Ground Motions on Response.” ESEE Report 00-4. Department of Civil; Environmental Engineering, Imperial College, London.

Ambraseys, N. N. 1975. “Trends in Engineering Seismology in Europe.” In Proceedings of Fifth European Conference on Earthquake Engineering, 3:39–52.

———. 1978a. “Middle East — a Reappraisal of Seismicity.” The Quarterly Journal of Engineering Geology 11 (1): 19–32.

———. 1978b. “Preliminary Analysis of European Strong-Motion Data 1965–1978.” Bulletin of the European Association of Earthquake Engineering 4: 17–37.

———. 1990. “Uniform Magnitude Re-Evaluation of European Earthquakes Associated with Strong-Motion Records.” Earthquake Engineering and Structural Dynamics 19 (1): 1–20.

———. 1995. “The Prediction of Earthquake Peak Ground Acceleration in Europe.” Earthquake Engineering and Structural Dynamics 24 (4): 467–90.

Ambraseys, N. N., and J. J. Bommer. 1991. “The Attenuation of Ground Accelerations in Europe.” Earthquake Engineering and Structural Dynamics 20 (12): 1179–1202.

———. 1992. “On the Attenuation of Ground Accelerations in Europe.” In Proceedings of Tenth World Conference on Earthquake Engineering, 2:675–78.

———. 1995. “Attenuation Relations for Use in Europe: An Overview.” In Proceedings of Fifth SECED Conference on European Seismic Design Practice, edited by A. S. Elnashai, 67–74.

Ambraseys, N. N., J. J. Bommer, and S. K. Sarma. 1992. “A Review of Seismic Ground Motions for UK Design.” ESEE Report 92-8. Department of Civil Engineering, Imperial College, London.

Ambraseys, N. N., and J. Douglas. 2003. “Near-Field Horizontal and Vertical Earthquake Ground Motions.” Soil Dynamics and Earthquake Engineering 23 (1): 1–18.

Ambraseys, N. N., J. Douglas, S. K. Sarma, and P. M. Smit. 2005a. “Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration.” Bulletin of Earthquake Engineering 3 (1): 1–53. https://doi.org/10.1007/s10518-005-0183-0.

———. 2005b. “Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Vertical Peak Ground Acceleration and Spectral Acceleration.” Bulletin of Earthquake Engineering 3 (1): 55–73. https://doi.org/10.1007/s10518-005-0186-x.

Ambraseys, N. N., and K. A. Simpson. 1996. “Prediction of Vertical Response Spectra in Europe.” Earthquake Engineering and Structural Dynamics 25 (4): 401–12.

Ambraseys, N. N., K. A. Simpson, and J. J. Bommer. 1996. “Prediction of Horizontal Response Spectra in Europe.” Earthquake Engineering and Structural Dynamics 25 (4): 371–400.

Ambraseys, N. N., P. Smit, J. Douglas, B. Margaris, R. Sigbjörnsson, S. Ólafsson, P. Suhadolc, and G. Costa. 2004. “Internet Site for European Strong-Motion Data.” Bollettino Di Geofisica Teorica Ed Applicata 45 (3): 113–29.

Ambraseys, N. N., and M. Srbulov. 1994. “Attenuation of Earthquake-Induced Ground Displacements.” Earthquake Engineering and Structural Dynamics 23 (5): 467–87.

Ambraseys, N., P. Smit, R. Berardi, D. Rinaldis, F. Cotton, and C. Berge. 2000. “Dissemination of European Strong-Motion Data.” CD-ROM collection.

Ameri, G., S. Drouet, P. Traversa, D. Bindi, and F. Cotton. 2017. “Toward an Empirical Ground Motion Prediction Equation for France: Accounting for Regional Differences in the Source Stress Parameter.” Bulletin of Earthquake Engineering 15 (11): 4681–4717. https://doi.org/10.1007/s10518-017-0171-1.

Ameur, M., B. Derras, and D. Zendagui. 2018. “Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data.” Pure and Applied Geophysics 175 (3): 1019–34. https://doi.org/10.1007/s00024-017-1743-3.

Amiri, G. G., M. Khorasani, R. M. Hessabi, and S. A. R. Amrei. 2009. “Ground-Motion Prediction Equations of Spectral Ordinates and Arias Intensity for Iran.” Journal of Earthquake Engineering 14 (1): 1–29. https://doi.org/10.1080/13632460902988984.

Amiri, G. G., A. Mahdavian, and F. M. Dana. 2007a. “Attenuation Relationships for Iran.” Journal of Earthquake Engineering 11 (4): 469–92. https://doi.org/10.1080/13632460601034049.

———. 2007b. “Response on the Discussion of ‘Attenuation Relationships for Iran’.” Journal of Earthquake Engineering 11 (6): 1036–7. https://doi.org/10.1080/13632460701647476.

Anbazhagan, P., A. Kumar, and T. G. Sitharam. 2013. “Ground Motion Prediction Equation Considering Combined Dataset of Recorded and Simulated Ground Motions.” Soil Dynamics and Earthquake Engineering 53: 92–108. https://doi.org/10.1016/j.soildyn.2013.06.003.

Ancheta, T. D., R. B. Darragh, J. P. Stewart, E. Seyhan, W. J. Silva, B. S. J. Chiou, K. E. Wooddell, et al. 2014. “NGA-West2 Database.” Earthquake Spectra 30 (3): 989–1005. https://doi.org/10.1193/070913EQS197M.

Anderson, J. G. 1997. “Nonparametric Description of Peak Acceleration Above a Subduction Thrust.” Seismological Research Letters 68 (1): 86–93.

Anderson, J. G., and S. E. Hough. 1984. “A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies.” Bulletin of the Seismological Society of America 74 (5): 1969–93.

Anderson, J. G., and Y. Lei. 1994. “Nonparametric Description of Peak Acceleration as a Function of Magnitude, Distance, and Site in Guerrero, Mexico.” Bulletin of the Seismological Society of America 84 (4): 1003–17.

Anderson, J. G., and Y. Uchiyama. 2011. “A Methodology to Improve Ground-Motion Prediction Equations by Including Path Corrections.” Bulletin of the Seismological Society of America 101 (4): 1822–46. https://doi.org/10.1785/0120090359.

Annaka, T., and Y. Nozawa. 1988. “A Probabilistic Model for Seismic Hazard Estimation in the Kanto District.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:107–12.

Ansal, A. M. 1997. “Istanbul Icin Tasarim Deprem Ozelliklerinin Belirlenmesi.” In Proceedings of Prof. Dr. Rifat Yarar Symposium, 1:233–44.

Ansary, M. A. 2014. “Engineering Characteristics of Ground Motions Recorded by Northeast Indian Strong Motion Instrumentation Network from 2005 to 2013.” In Proceedings of the Tenth U.s. National Conference on Earthquake Engineering.

Aptikaev, F., and J. Kopnichev. 1980. “Correlation Between Seismic Vibration Parameters and Type of Faulting.” In Proceedings of Seventh World Conference on Earthquake Engineering, 1:107–10.

Arroyo, D., D. Garcı́a, M. Ordaz, M. A. Mora, and S. K. Singh. 2010. “Strong Ground-Motion Relations for Mexican Interplate Earthquakes.” Journal of Seismology 14 (4): 769–85. https://doi.org/10.1007/s10950-010-9200-0.

Arroyo, D., and M. Ordaz. 2011. “On the Forecasting of Ground-Motion Parameters for Probabilistic Seismic Hazard Analysis.” Earthquake Spectra 27 (1): 1–21. https://doi.org/10.1193/1.3525379.

Atkinson, G. M. 1990. “A Comparison of Eastern North American Ground Motion Observations with Theoretical Predictions.” Seismological Research Letters 61 (3–4): 171–80.

———. 1997. “Empirical Ground Motion Relations for Earthquakes in the Cascadia Region.” Canadian Journal of Civil Engineering 24: 64–77.

———. 2001. “An Alternative to Stochastic Ground-Motion Relations for Use in Seismic Hazard Analysis in Eastern North America.” Seismological Research Letters 72: 299–306.

———. 2011. “An Empirical Perspective on Uncertainty in Earthquake Ground Motion Prediction.” Canadian Journal of Civil Engineering 38 (9): 1002–15. https://doi.org/10.1139/L10-120.

———. 1996. “The High-Frequency Shape of the Source Spectrum for Earthquakes in Eastern and Western Canada.” Bulletin of the Seismological Society of America 86 (1A): 106–12.

———. 2004. “Empirical Attenuation of Ground-Motion Spectral Amplitudes of Southeastern Canada and the Northeastern United States.” Bulletin of the Seismological Society of America 94 (3): 1079–95.

———. 2005. “Ground Motions for Earthquakes in Southwestern British Columbia and Northwestern Washington: Crustal, in-Slab, and Offshore Events.” Bulletin of the Seismological Society of America 95 (3): 1027–44. https://doi.org/10.1785/0120040182.

———. 2006. “Single-Station Sigma.” Bulletin of the Seismological Society of America 96 (2): 446–55. https://doi.org/10.1785/0120050137.

———. 2008. “Ground-Motion Prediction Equations for Eastern North America from a Referenced Empirical Approach: Implications for Epistemic Uncertainty.” Bulletin of the Seismological Society of America 98 (3): 1304–18. https://doi.org/10.1785/0120070199.

———. 2009. “Ground Motion Prediction Equations for Hawaii from a Referenced Empirical Approach.” Final technical report 08HQGR0020.

———. 2010. “Ground Motion Prediction Equations for Hawaii from a Referenced Empirical Approach.” Bulletin of the Seismological Society of America 100 (2): 751–61. https://doi.org/10.1785/0120090098.

———. 2015. “Ground-Motion Prediction Equation for Small-to-Moderate Events at Short Hypocentral Distances, with Application to Induced-Seismicity Hazards.” Bulletin of the Seismological Society of America 105 (2A): 981–92. https://doi.org/10.1785/0120140142.

Atkinson, G. M., and J. Adams. 2013. “Ground Motion Prediction Equations for Application to the 2015 Canadian National Seismic Hazard Maps.” Canadian Journal of Civil Engineering 40 (10): 988–98. https://doi.org/10.1139/cjce-2012-0544.

Atkinson, G. M., J. J. Bommer, and N. A. Abrahamson. 2014. “Alternative Approaches to Modeling Epistemic Uncertainty in Ground Motions in Probabilistic Seismic-Hazard Analysis.” Seismological Research Letters 85 (6): 1141–4. https://doi.org/10.1785/0220140120.

Atkinson, G. M., and D. M. Boore. 1997a. “Some Comparisons Between Recent Ground-Motion Relations.” Seismological Research Letters 68 (1).

———. 1997b. “Stochastic Point-Source Modeling of Ground Motions in the Cascadia Region.” Seismological Research Letters 68 (1): 74–85.

———. 2003. “Empirical Ground-Motion Relations for Subduction Zone Earthquakes and Their Application to Cascadia and Other Regions.” Bulletin of the Seismological Society of America 93 (4): 1703–29.

———. 2006. “Earthquake Ground-Motion Prediction Equations for Eastern North America.” Bulletin of the Seismological Society of America 96 (6): 2181–2205. https://doi.org/10.1785/0120050245.

———. 1990. “Recent Trends in Ground Motion and Spectral Response Relations for North America.” Earthquake Spectra 6 (1): 15–35.

———. 1995. “Ground-Motion Relations for Eastern North America.” Bulletin of the Seismological Society of America 85 (1): 17–30.

———. 2011. “Modifications to Existing Ground-Motion Prediction Equations in Light of New Data.” Bulletin of the Seismological Society of America 101 (3): 1121–35. https://doi.org/10.1785/0120100270.

Atkinson, G. M., and M. Macias. 2009. “Predicted Ground Motions for Great Interface Earthquakes in the Cascadia Subduction Zone.” Bulletin of the Seismological Society of America 99 (3): 1552–78.

Atkinson, G. M., and W. Silva. 1997. “An Empirical Study of Earthquake Source Spectra for California Earthquakes.” Bulletin of the Seismological Society of America 87 (1): 97–113.

———. 2000. “Stochastic Modeling of California Ground Motion.” Bulletin of the Seismological Society of America 90 (2): 255–74.

Atkinson, G. M., and D. J. Wald. 2007. “‘Did You Feel It?’ Intensity Data: A Surprisingly Good Measure of Earthquake Ground Motion.” Seismological Research Letters 78 (3): 362–68.

Atkinson, G. M., C. B. Worden, and D. J. Wald. 2014. “Intensity Prediction Equation for North America.” Bulletin of the Seismological Society of America 104 (6): 3084–93. https://doi.org/10.1785/0120140178.

Aydan, Ö. 2001. “Istanbul Bogazi Denizalti Gecisi Icin Tup Tünel Ile Kalkan Tünelin Uygunlugunun Karsilastirilmasi.” Jeoloji Mühendisligi 25 (1): 1–17.

———. 2007. “Inference of Seismic Characteristics of Possible Earthquakes and Liquefaction and Landslide Risks from Active Faults.” In The 6th National Conference on Earthquake Engineering of Turkey, 1:563–74.

Aydan, Ö., M. Sedaki, and R. Yarar. 1996. “The Seismic Characteristics of Turkish Earthquakes.” In Proceedings of Eleventh World Conference on Earthquake Engineering.

Ágústsson, K., B. orbjarnardóttir, and K. Vogfjör. 2008. “Seismic Wave Attenuation for Earthquakes in SW Iceland: First Results.” 08005. Veurstofa Íslands (Icelandic Meteorological Office).

Baag, C.-E., S.-J. Chang, N.-D. Jo, and J.-S. Shin. 1998. “Evaluation of Seismic Hazard in the Southern Part of Korea.” In Proceedings of the Second International Symposium on Seismic Hazards and Ground Motion in the Region of Moderate Seismicity.

Bahrampouri, M., A. Rodriguez-Marek, and R. A. Green. 2021a. “Ground Motion Prediction Equations for Arias Intensity Using the Kik-Net Database.” Earthquake Spectra 37 (1): 428–48. https://doi.org/10.1177/8755293020938815.

———. 2021b. “Ground Motion Prediction Equations for Significant Duration Using the Kik-Net Database.” Earthquake Spectra 37 (2): 903–20. https://doi.org/10.1177/8755293020970971.

Bajaj, K., and P. Anbazhagan. 2018. “Determination of GMPE Functional Form for an Active Region with Limited Strong Motion Data: Application to the Himalayan Region.” Journal of Seismology 22 (1): 161–85. https://doi.org/10.1007/s10950-017-9698-5.

———. 2019a. “Regional Stochastic GMPE with Available Recorded Data for Active Region — Application to the Himalayan Region.” Soil Dynamics and Earthquake Engineering 126: 105825. https://doi.org/10.1016/j.soildyn.2019.105825.

———. 2019b. “Regional Stochastic Ground-Motion Model for Low to Moderate Seismicity Area with Variable Seismotectonic: Application to Peninsular India.” Bulletin of Earthquake Engineering 17: 3661–80. https://doi.org/10.1007/s10518-019-00646-9.

Bakun, W. H. 2006a. “Estimating Locations and Magnitudes of Earthquakes in Southern California from Modified Mercalli Intensities.” Bulletin of the Seismological Society of America 96 (4A): 1278–95. https://doi.org/10.1785/0120050205.

———. 2006b. “MMI Attenuation and Historical Earthquakes in the Basin and Range Province of Western North America.” Bulletin of the Seismological Society of America 96 (6): 2206–20. https://doi.org/10.1785/0120060045.

Bakun, W. H., A. C. Johnston, and M. G. Hopper. 2003. “Estimating Locations and Magnitudes of Earthquakes in Eastern North America from Modified Mercalli Intensities.” Bulletin of the Seismological Society of America 93 (1): 190–202.

Bakun, W. H., and O. Scotti. 2006. “Regional Intensity Attenuation Models for France and the Estimation of Magnitude and Location of Historical Earthquakes.” Geophysical Journal International 164: 596–610.

Bakun, W. H., and C. M. Wentworth. 1997. “Estimating Earthquake Location and Magnitude from Seismic Intensity Data.” Bulletin of the Seismological Society of America 87 (6): 1502–21.

———. 1999. “Erratum for ‘Estimating Earthquake Location and Magnitude from Seismic Intensity Data’.” Bulletin of the Seismological Society of America 89 (2): 557.

Balendra, T., N. T. K. Lam, J. L. Wilson, and K. H. Kong. 2002. “Analysis of Long-Distance Earthquake Tremors and Base Shear Demand for Buildings in Singapore.” Engineering Structures 24 (1): 99–108.

Baltay, A. S., T. C. Hanks, and N. A. Abrahamson. 2017. “Uncertainty, Variability, and Earthquake Physics in Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 107 (4): 1754–72. https://doi.org/10.1785/0120160164.

Baruah, S., S. Baruah, N. K. Gogoi, O. Erteleva, F. Aptikaev, and J. R. Kayal. 2009. “Ground Motion Parameters of Shillong Plateau: One of the Most Seismically Active Zones of Northeastern India.” Earthquake Science 22 (3): 283–91. https://doi.org/10.1007/s11589-009-0285-2.

Battis, J. 1981. “Regional Modification of Acceleration Attenuation Functions.” Bulletin of the Seismological Society of America 71 (4): 1309–21.

Baumont, D., K. Manchuel, P. Traversa, C. Durouchoux, E. Nayman, and G. Ameri. 2018. “Intensity Predictive Attenuation Models Calibrated in \(Mw\) for Metropolitan France.” Bulletin of Earthquake Engineering 16 (6): 2285–2310. https://doi.org/10.1007/s10518-018-0344-6.

Bay, F., D. Fäh, L. Malagnini, and D. Giardini. 2003. “Spectral Shear-Wave Ground-Motion Scaling in Switzerland.” Bulletin of the Seismological Society of America 93 (1): 414–29.

Bayless, J., and N. A. Abrahamson. 2018. “An Empirical Model for Fourier Amplitude Spectra Using the NGA-West2 Database.” PEER Report 2018/07. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, USA.

———. 2019. “Summary of the BA18 Ground‐Motion Model for Fourier Amplitude Spectra for Crustal Earthquakes in California.” Bulletin of the Seismological Society of America 109 (5): 2088–2105. https://doi.org/10.1785/0120190077.

Båth, M. 1975. “Seismicity of the Tanzania Region.” Tectonophysics 27: 353–79.

Båth, M. 1980. “Intensity Relations for Swedish Earthquakes.” Tectonophysics 67: 163–73.

BC Hydro. 2012. “Probabilistic Seismic Hazard Analysis (PSHA) Model, Volumes 1, 2, 3 and 4.” E658. BC Hydro Engineering.

Beauducel, F., S. Bazin, and M. Bengoubou-Valerius. 2004. “Loi d’atténuation B-Cube Pour L’évaluation Rapide Des Intensités Sismiques Probables Dans L’Archipel de Guadeloupe.” Internal report OVSG-IPGP-UAG. Observatoire Volcanologique et Sismologique de Guadeloupe.

Beauducel, F., S. Bazin, M. Bengoubou-Val‘érius, M.-P. Bouin, A. Bosson, C. Anténor-Habazac, V. Clouard, and J.-B. de Chabalier. 2011. “Empirical Model for Rapid Macroseismic Intensities Prediction in Guadeloupe and Martinique/Modèle Empirique Pour La Prédiction Rapide Des Intensités Macrosismiques En Guadeloupe et Martinique.” Comptes Rendus Geoscience 343 (11–12): 717–28. https://doi.org/10.1016/j.crte.2011.09.004.

Beauval, C., H. Yepes, W. H. Bakun, J. Egred, A. Alvarado, and J.-C. Singaucho. 2010. “Locations and Magnitudes of Historical Earthquakes in the Sierra of Ecuador (1587–1996).” Geophysical Journal International 181: 1613–33. https://doi.org/10.1111/j.1365-246X.2010.04569.x.

Benito, B., L. Cabañas, M. E. Jiménez, C. Cabañas, M. López, P. Gómez, and S. Alvarez. 2000. “Caracterización Del Movimiento Del Suelo En Emplazamientos de La Penı́nsula Ibérica Y Evaluación Del Daño Potencial En Estructuras. Proyecto Daños.” In Monografia Ref. 19.2000, edited by Consejo de Seguridad Nuclear.

Benito, B., and J. M. Gaspar-Escribano. 2007. “Ground Motion Characterization and Seismic Hazard Assessment in Spain: Context, Problems and Recent Developments.” Journal of Seismology 11 (4): 433–52. https://doi.org/10.1007/s10950-007-9063-1.

Benito, B., D. Rinaldis, V. Gorelli, and A. Paciello. 1992. “Influence of the Magnitude, Distance and Natural Period of Soil in the Strong Ground Motion.” In Proceedings of Tenth World Conference on Earthquake Engineering, 2:773–79.

Ben-Menahem, A., M. Vered, and D. Brooke. 1982. “Earthquake Risk in the Holy Land.” Bollettino Di Geofisica Teorica Ed Applicata XXIV: 175–203.

Benouar, D. 1994. “Magnitude-Intensity and Intensity-Attenuation Relationships for Atlas Region and Algerian Earthquakes.” Earthquake Engineering and Structural Dynamics 23 (7): 717–27. https://doi.org/10.1002/eqe.4290230703.

Berge-Thierry, C., F. Cotton, O. Scotti, D.-A. Griot-Pommera, and Y. Fukushima. 2003. “New Empirical Response Spectral Attenuation Laws for Moderate European Earthquakes.” Journal of Earthquake Engineering 7 (2): 193–222.

Bernal, G., O.-D. Cardona, A. Barbat, and M. Salgado. 2014. “Strong Motion Attenuation Relationships for Colombia.” In Proceedings of Second European Conference on Earthquake Engineering and Seismology (a Joint Event of the 15th ECEE & 31st General Assembly of the ESC.

Beyaz, T. 2004. “Development of a New Attenuation Relationship of Seismic Energy for Turkey Using the Strong Motion Records Free of Soil Effect.” PhD thesis, Ankara University, Turkey.

Beyer, K., and J. J. Bommer. 2006. “Relationships Between Median Values and Between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion.” Bulletin of the Seismological Society of America 96 (4A): 1512–22. https://doi.org/10.1785/0120050210.

Bindi, D., F. Cotton, S. R. Kotha, C. Bosse, D. Stromeyer, and G. Grünthal. 2017. “Application-Driven Ground Motion Prediction Equation for Seismic Hazard Assessments in Non-Cratonic Moderate-Seismicity Areas.” Journal of Seismology. https://doi.org/10.1007/s10950-017-9661-5.

Bindi, D., S.-R. Kotha, G. Weatherill, G. Lanzano, L. Luzi, and F. Cotton. 2019. “The Pan-European Engineering Strong Motion (ESM) Flatfile: Consistency Check via Residual Analysis.” Bulletin of Earthquake Engineering 17 (2): 583–602. https://doi.org/10.1007/s10518-018-0466-x.

Bindi, D., L. Luzi, M. Massa, and F. Pacor. 2010. “Horizontal and Vertical Ground Motion Prediction Equations Derived from the Italian Accelerometric Archive (ITACA).” Bulletin of Earthquake Engineering 8 (5): 1209–30. https://doi.org/10.1007/s10518-009-9130-9.

Bindi, D., L. Luzi, and F. Pacor. 2009. “Interevent and Interstation Variability Computed for the Italian Accelerometric Archive (ITACA).” Bulletin of the Seismological Society of America 99 (4): 2471–88. https://doi.org/10.1785/0120080209.

Bindi, D., L. Luzi, F. Pacor, G. Franceshina, and R. R. Castro. 2006. “Ground-Motion Predictions from Empirical Attenuation Relationships Versus Recorded Data: The Case of the 1997–-1998 Umbria-Marche, Central Italy, Strong-Motion Data Set.” Bulletin of the Seismological Society of America 96 (3): 984–1002. https://doi.org/10.1785/0120050102.

Bindi, D., L. Luzi, F. Pacor, F. Sabetta, and M. Massa. 2009. “Towards a New Reference Ground Motion Prediction Equation for Italy: Update of the Sabetta-Pugliese (1996).” Bulletin of Earthquake Engineering 7 (3): 591–608. https://doi.org/10.1007/s10518-009-9107-8.

Bindi, D., M. Massa, L. Luzi, G. Ameri, F. Pacor, R. Puglia, and P. Augliera. 2014a. “Erratum to: Pan-European Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and \(5\%\)-Damped PSA at Spectral Periods up to \(3.0\s\) Using the RESORCE Dataset.” Bulletin of Earthquake Engineering 12 (1): 431–48. https://doi.org/10.1007/s10518-014-9589-x.

———. 2014b. “Pan-European Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and \(5\%\)-Damped PSA at Spectral Periods up to \(3.0\s\) Using the RESORCE Dataset.” Bulletin of Earthquake Engineering 12 (1): 391–430. https://doi.org/10.1007/s10518-013-9525-5.

Bindi, D., F. Pacor, L. Luzi, R. Puglia, M. Massa, G. Ameri, and R. Paolucci. 2011. “Ground Motion Prediction Equations Derived from the Italian Strong Motion Database.” Bulletin of Earthquake Engineering 9 (6): 1899–1920. https://doi.org/10.1007/s10518-011-9313-z.

Bindi, D., S. Parolai, H. Grosser, C. Milkereit, and E. Durukal. 2007. “Empirical Ground-Motion Prediction Equations for Northwestern Turkey Using the Aftershocks of the 1999 Kocaeli Earthquake.” Geophysical Research Letters 34 (L08305). https://doi.org/10.1029/2007GL029222.

Bindi, D., S. Parolai, A. Oth, K. Abdrakhmatov, A. Muraliev, and J. Zschau. 2011. “Intensity Prediction Equations for Central Asia.” Geophysical Journal International 187: 327–37. https://doi.org/10.1111/j.1365-246X.2011.05142.x.

Blume, J. A. 1977. “The SAM Procedure for Site-Acceleration-Magnitude Relationships.” In Proceedings of Sixth World Conference on Earthquake Engineering, I:416–22.

———. 1980. “Distance Partitioning in Attenuation Studies.” In Proceedings of Seventh World Conference on Earthquake Engineering, 2:403–10.

Boatwright, J., H. Bundock, J. Luetgert, L. Seekins, L. Gee, and P. Lombard. 2003. “The Dependence of PGA and PGV on Distance and Magnitude Inferred from Northern California ShakeMap Data.” Bulletin of the Seismological Society of America 93 (5): 2043–55.

Bodin, P., L. Malagnini, and A. Akinci. 2004. “Ground-Motion Scaling in the Kachchh Basin, India, Deduced from Aftershocks of the 2001 \({M}_w 7.6\) Bhuj Earthquake.” Bulletin of the Seismological Society of America 94 (5): 1658–69.

Bolt, B. A., and N. A. Abrahamson. 1982. “New Attenuation Relations for Peak and Expected Accelerations of Strong Ground Motion.” Bulletin of the Seismological Society of America 72 (6): 2307–21.

Bommer, J. J. 2006. “Empirical Estimation of Ground Motion: Advances and Issues.” In Proceedings of Third International Symposium on the Effects of Surface Geology on Seismic Motion, 115–35.

Bommer, J. J., S. Akkar, and S. Drouet. 2012. “Extending Ground-Motion Prediction Equations for Spectral Accelerations to Higher Response Frequencies.” Bulletin of Earthquake Engineering 10 (2): 379–99. https://doi.org/10.1007/s10518-011-9304-0.

Bommer, J. J., S. Akkar, and Ö Kale. 2011. “A Model for Vertical-to-Horizontal Response Spectral Ratios for Europe and the Middle East.” Bulletin of the Seismological Society of America 101 (4): 1783–1806. https://doi.org/10.1785/0120100285.

Bommer, J. J., and J. E. Alarcón. 2006. “The Prediction and Use of Peak Ground Velocity.” Journal of Earthquake Engineering 10 (1): 1–31.

Bommer, J. J., K. J. Coppersmith, R. T. Coppersmith, K. L. Hanson, A. Mangongolo, J. Neveling, E. M. Rathje, et al. 2015. “A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa.” Earthquake Spectra 31 (2): 661–98. https://doi.org/10.1193/060913EQS145M.

Bommer, J. J., B. Dost, B. Edwards, P. J Stafford, J. van Elk, D. Doornhof, and M. Ntinalexis. 2016. “Developing an Application-Specific Ground-Motion Model for Induced Seismicity.” Bulletin of the Seismological Society of America 106 (1): 158–73. https://doi.org/10.1785/0120150184.

Bommer, J. J., J. Douglas, F. Scherbaum, F. Cotton, H. Bungum, and D. Fäh. 2010. “On the Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis.” Seismological Research Letters 81 (5): 783–93. https://doi.org/10.1785/gssrl.81.5.783.

Bommer, J. J., J. Douglas, and F. O. Strasser. 2003. “Style-of-Faulting in Ground-Motion Prediction Equations.” Bulletin of Earthquake Engineering 1 (2): 171–203.

Bommer, J. J., A. S. Elnashai, G. O. Chlimintzas, and D. Lee. 1998. “Review and Development of Response Spectra for Displacement-Based Seismic Design.” ESEE Report 98-3. Department of Civil Engineering, Imperial College, London.

Bommer, J. J., A. S. Elnashai, and A. G. Weir. 2000. “Compatible Acceleration and Displacement Spectra for Seismic Design Codes.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Bommer, J. J., D. A. Hernández, J. A. Navarrete, and W. M. Salazar. 1996. “Seismic Hazard Assessments for El Salvador.” Geofı́sica Internacional 35 (3): 227–44.

Bommer, J. J., and A. Martı́nez-Pereira. 1999. “The Effective Duration of Earthquake Strong Motion.” Journal of Earthquake Engineering 3 (2): 127–72.

Bommer, J. J., S. Oates, J. M. Cepeda, C. Lindholm, J. Bird, R. Torres, G. Marroquín, and J. Rivas. 2006. “Control of Hazard Due to Seismicity Induced by a Hot Fractured Rock Geothermal Project.” Engineering Geology 83: 287–306. https://doi.org/10.1016/j.enggeo.2005.11.002.

Bommer, J. J., and F. Scherbaum. 2008. “The Use and Misuse of Logic Trees in Probabilistic Seismic Hazard Analysis.” Earthquake Spectra 24 (4): 997–1009.

Bommer, J. J., P. J. Stafford, and J. E. Alarcón. 2009. “Empirical Equations for the Prediction of the Significant, Bracketed, and Uniform Duration of Earthquake Ground Motion.” Bulletin of the Seismological Society of America 99 (6): 3217–33. https://doi.org/10.1785/0120080298.

Bommer, J. J., P. J. Stafford, J. E. Alarcón, and S. Akkar. 2007. “The Influence of Magnitude Range on Empirical Ground-Motion Prediction.” Bulletin of the Seismological Society of America 97 (6): 2152–70. https://doi.org/10.1785/0120070081.

Bommer, J. J., P. J. Stafford, B. Edwards, B. Dost, E. van Dedem, A. Rodriguez-Marek, P. Kruiver, J. van Elk, D. Doornhof, and M. Ntinalexis. 2017. “Framework for a Ground-Motion Model for Induced Seismic Hazard and Risk Analysis in the Groningen Gas Field, The Netherlands.” Earthquake Spectra 33 (2): 481–98. https://doi.org/10.1193/082916EQS138M.

Boore, D. M. 2004. “Estimating \(vs30\) (or NEHRP Site Classes) from Shallow Velocity Models (Depths \(\leq\) \(30\m\)).” Bulletin of the Seismological Society of America 94 (2): 591–97.

———. 2005. “Erratum: Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work.” Seismological Research Letters 76 (3): 368–69.

———. 2018. “Ground-Motion Models for Very-Hard-Rock Sites in Eastern North America: An Update.” Seismological Research Letters 89 (3): 1172–84. https://doi.org/10.1785/0220170218.

———. 1983. “Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of the Radiated Spectra.” Bulletin of the Seismological Society of America 73 (6): 1865–94.

Boore, D. M., and G. M. Atkinson. 2007. “Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters.” PEER Report 2007/01. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 2008. “Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and \(5\%\)-Damped PSA at Spectral Periods Between \(0.01\s\) and \(10.0\s\).” Earthquake Spectra 24 (1): 99–138. https://doi.org/10.1193/1.2830434.

———. 1987. “Stochastic Prediction of Ground Motion and Spectral Response Parameters at Hard-Rock Sites in Eastern North America.” Bulletin of the Seismological Society of America 77 (22): 440–67.

Boore, D. M., and W. B. Joyner. 1982. “The Empirical Prediction of Ground Motion.” Bulletin of the Seismological Society of America 72 (6): S43–S60.

———. 1991. “Estimation of Ground Motion at Deep-Soil Sites in Eastern North America.” Bulletin of the Seismological Society of America 81 (6): 2167–85.

Boore, D. M., W. B. Joyner, and T. E. Fumal. 1993. “Estimation of Response Spectra and Peak Accelerations from Western North American Earthquakes: An Interim Report.” Open-File Report 93-509. U.S. Geological Survey.

———. 1994a. “Estimation of Response Spectra and Peak Accelerations from Western North American Earthquakes: An Interim Report. Part 2.” Open-File Report 94-127. U.S. Geological Survey.

———. 1994b. “Ground Motion Estimates for Strike- and Reverse-Slip Faults.”

———. 1997. “Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work.” Seismological Research Letters 68 (1): 128–53.

Boore, D. M., J. P. Stewart, E. Seyhan, and G. M. Atkinson. 2013. “NGA-West2 Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes.” 2013/05. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 2014. “NGA-West 2 Equations for Predicting PGA, PGV, and 5%-Damped PSA for Shallow Crustal Earthquakes.” Earthquake Spectra 30 (3): 1057–85. https://doi.org/10.1193/070113EQS184M.

Boore, D. M., J. P. Stewart, A. A. Skarlatoudis, E. Seyhan, B. Margaris, N. Theodoulidis, E. Scordilis, I. Kalogeras, N. Klimis, and N. S. Melis. 2021. “A Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Greece.” Bulletin of the Seismological Society of America 111 (2): 857–74. https://doi.org/10.1785/0120200270.

Boore, D. M., E. M. Thompson, and H. Cadet. 2011. “Regional Correlations of \({V}_{{S}30}\) and Velocities Averaged over Depths Less Than and Greater Than 30 Meters.” Bulletin of the Seismological Society of America 101 (6): 3046–59.

Boore, D. M., J. Watson-Lamprey, and N. A. Abrahamson. 2006. “Orientation-Independent Measures of Ground Motion.” Bulletin of the Seismological Society of America 96 (4A): 1502–11. https://doi.org/10.1785/0120050209.

Bora, S. S., F. Cotton, F. Scherbaum, B. Edwards, and P. Traversa. 2017. “Stochastic Source, Path and Site Attenuation Parameters and Associated Variabilities for Shallow Crustal European Earthquakes.” Bulletin of Earthquake Engineering 15 (11): 4531–61. https://doi.org/10.1007/s10518-017-0167-x.

Bora, S. S., F. Scherbaum, N. Kuehn, P. Stafford, and B. Edwards. 2015. “Development of a Response Spectral Ground-Motion Prediction Equation (GMPE) for Seismic-Hazard Analysis from Empirical Fourier Spectral and Duration Models.” Bulletin of the Seismological Society of America 105 (4): 2192–2218. https://doi.org/10.1785/0120140297.

Bora, S. S., F. Scherbaum, N. Kuehn, and P. J. Stafford. 2014. “Fourier Spectral- and Duration Models for the Generation of Response Spectra Adjustable to Different Source-, Propagation-, and Site Conditions.” Bulletin of Earthquake Engineering 12 (1): 467–93. https://doi.org/10.1007/s10518-013-9482-z.

Borcherdt, R. D. 1994. “Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification).” Earthquake Spectra 10 (4): 617–53.

Bouhadad, Y., N. Laouami, R. Bensalem, and S. Larbes. 1998. “Seismic Hazard Estimation in the Central Tell Atlas of Algeria (Algiers-Kabylia).” In Proceedings of Eleventh European Conference on Earthquake Engineering.

Bourne, S. J., S. J. Oates, J. J. Bommer, B. Dost, J. van Elk, and D. Doornhof. 2015. “Monte Carlo Method for Probabilistic Hazard Assessment of Induced Seismicity Due to Conventional Natural Gas Production.” Bulletin of the Seismological Society of America 105 (3): 1721–38. https://doi.org/10.1785/0120140302.

Boyd, O. S., and C. H. Cramer. 2014. “Estimating Earthquake Magnitudes from Reported Intensities in the Central and Eastern United States.” Bulletin of the Seismological Society of America 104 (4): 1709–22. https://doi.org/10.1785/0120120352.

Bozorgnia, Y., and K. W. Campbell. 2004a. “Engineering Characterization of Ground Motion.” In Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, edited by Y. Bozorgnia and V. Bertero. Boca Raton, FL: CRC Press.

———. 2004b. “The Vertical-to-Horizontal Response Spectral Ratio and Tentative Procedures for Developing Simplified V/H and the Vertical Design Spectra.” Journal of Earthquake Engineering 8 (2): 175–207.

———. 2016a. “Ground Motion Model for the Vertical-to-Horizontal (V/H) Ratios of PGA, PGV, and Response Spectra.” Earthquake Spectra 32: 951–78. https://doi.org/10.1193/100614EQS151M.

———. 2016b. “Vertical Ground Motion Model for PGA, PGV, and Linear Response Spectra Using the NGA-West2 Database.” Earthquake Spectra 32 (2): 979–1004. https://doi.org/10.1193/072814EQS121M.

Bozorgnia, Y., K. W. Campbell, and M. Niazi. 2000. “Observed Spectral Characteristics of Vertical Ground Motion Recorded During Worldwide Earthquakes from 1957 to 1995.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Bozorgnia, Y., M. M. Hachem, and K. W. Campbell. 2010. “Ground Motion Prediction Equation (‘Attenuation Relationship’) for Inelastic Response Spectra.” Earthquake Spectra 26 (1): 1–23. https://doi.org/10.1193/1.3281182.

Bozorgnia, Y., M. Niazi, and K. W. Campbell. 1995. “Characteristics of Free-Field Vertical Ground Motion During the Northridge Earthquake.” Earthquake Spectra 11 (4): 515–25.

Böse, M. 2006. “Earthquake Early Warning for Istanbul Using Artifical Neural Networks.” PhD thesis, Fakultät für Physik der Universität, Karlsruhe, Germany.

Bradley, B. A. 2013. “A New Zealand-Specific Pseudo-Spectral Acceleration Ground-Motion Prediction Equation for Active Shallow Crustal Earthquakes Based on Foreign Models.” Bulletin of the Seismological Society of America 103 (3): 1801–22. https://doi.org/10.1785/0120120021.

———. 2010. “NZ-Specific Pseudo-Spectral Acceleration Ground Motion Prediction Equations Based on Foreign Models.” University of Canterbury Research Report 2010-03. Department of Civil; Natural Resources Engineering, University of Canterbury.

Bragato, P. L. 2004. “Regression Analysis with Truncated Samples and Its Application to Ground-Motion Attenuation Studies.” Bulletin of the Seismological Society of America 94 (4): 1369–78.

———. 2005. “Estimating an Upper Limit Probability Distribution for Peak Ground Acceleration Using the Randomly Clipped Normal Distribution.” Bulletin of the Seismological Society of America 95 (6): 2058–65. https://doi.org/10.1785/0120040213.

———. 2009. “Assessing Regional and Site-Dependent Variability of Ground Motions for ShakeMap Implementation in Italy.” Bulletin of the Seismological Society of America 99 (5): 2950–60. https://doi.org/10.1785/0120090020.

Bragato, P. L., and D. Slejko. 2005. “Empirical Ground-Motion Attenuation Relations for the Eastern Alps in the Magnitude Range 2.5–6.3.” Bulletin of the Seismological Society of America 95 (1): 252–76. https://doi.org/10.1785/0120030231.

Bray, J. D., and A. Rodriguez-Marek. 2004. “Characterization of Forward-Directivity Ground Motions in the Near-Fault Region.” Soil Dynamics and Earthquake Engineering 24 (11): 815–28. https://doi.org/10.1016/j.soildyn.2004.05.001.

Breska, M., I. Perus, and V. Stankovski. 2015. “Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database.” International Journal of Environmental, Ecological, Geological and Geophysical Engineering 9 (2): 66–70.

Brillinger, D. R., and H. K. Preisler. 1984. “An Exploratory Analysis of the Joyner-Boore Attenuation Data.” Bulletin of the Seismological Society of America 74 (4): 1441–50.

———. 1985. “Further Analysis of the Joyner-Boore Attenuation Data.” Bulletin of the Seismological Society of America 75 (2): 611–14.

Bullock, Z., A. B. Liel, S. Dashti, and K. A. Porter. 2020. “A Suite of Ground Motion Prediction Equations for Cumulative Absolute Velocity in Shallow Crustal Earthquakes Including Epistemic Uncertainty.” Earthquake Spectra 37 (2): 937–58. https://doi.org/10.1177/8755293020957342.

Bungum, H., A. Dahle, G. Toro, R. McGuire, and O. T. Gudmestad. 1992. “Ground Motions from Intraplate Earthquakes.” In Proceedings of Tenth World Conference on Earthquake Engineering, 2:611–16.

Buratti, N., P. J. Stafford, and J. J. Bommer. 2011. “Earthquake Accelerogram Selection and Scaling Procedures for Estimating the Distribution of Drift Response.” Journal of Structural Engineering, ASCE 137 (3): 345–57. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000217.

Bydlon, S. A., A. Gupta, and E. M. Dunham. 2017. “Using Simulated Ground Motions to Constrain Near-Source Ground-Motion Prediction Equations in Areas Experiencing Induced Seismicity.” Bulletin of the Seismological Society of America 107 (5): 2078–93. https://doi.org/10.1785/0120170003.

Bydlon, S. A., K. B. Withers, and E. M. Dunham. 2019. “Combining Dynamic Rupture Simulations with Ground-Motion Data to Characterize Seismic Hazard from \(M_w\) 3 to 5.8 Earthquakes in Oklahoma and Kansas.” Bulletin of the Seismological Society of America 109 (2): 652–71. https://doi.org/10.1785/0120180042.

Cabalar, A. F., and A. Cevik. 2009. “Genetic Programming-Based Attenuation Relationship: An Application of Recent Earthquakes in Turkey.” Computers and Geosciences 35: 1884–96. https://doi.org/10.1016/j.cageo.2008.10.015.

Cabañas, L., B. Benito, C Cabañas, M. López, P. Gómez, M. E. Jiménez, and S. Alvarez. 1999. “Banco de Datos de Movimiento Fuerte Del Suelo Mfs. Aplicaciones.” In Fı́sica de La Tierra, edited by Complutense, 11:111–37.

Cabañas, L., M. Lopez, B. Benito, and M. E. Jiménez. 2000. “ESTIMATION of PGA Attenuation Laws for SPAIN and MEDITERRANEAN Region. COMPARISON with Other Ground Motion Models.” In Proceedings of the XXVII General Assembly of the European Seismological Commission (ESC).

Caillot, V., and P. Y. Bard. 1993. “Magnitude, Distance and Site Dependent Spectra from Italian Accelerometric Data.” European Earthquake Engineering VII (1): 37–48.

Cameletti, M., V. De Rubeis, C. Ferrari, P. Sbarra, and P. Tosi. 2017. “An Ordered Probit Model for Seismic Intensity Data.” Stochastic Environmental Research and Risk Assessment 31 (7): 1593–1602. https://doi.org/10.1007/s00477-016-1260-4.

Campbell, K. W. 1984. “Near-Source Attenuation of Strong Ground Motion for Moderate to Large Earthquakes: An Update and Suggested Application to the Wasatch Fault Zone of North-Central Utah.” In Proceedings of Conference XXVI: A Workshop on Evaluation of Regional and Urban Earthquake Hazards and Risk in Utah, 483–99. US Geological Survey.

———. 1997. “Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra.” Seismological Research Letters 68 (1): 154–79.

———. 2000. “Erratum: Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra.” Seismological Research Letters 71 (3): 352–54.

———. 2001. “Erratum: Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra.” Seismological Research Letters 72 (4): 474.

———. 2003a. “Engineering Models of Strong Ground Motion.” In Handbook of Earthquake Engineering, edited by W. F. Chen and C. Scawthorn. Boca Raton, FL, USA: CRC Press.

———. 2003b. “Prediction of Strong Ground Motion Using the Hybrid Empirical Method and Its Use in the Development of Ground-Motion (Attenuation) Relations in Eastern North America.” Bulletin of the Seismological Society of America 93 (3): 1012–33.

———. 2003c. “Strong-Motion Attenuation Relations.” In International Handbook of Earthquake and Engineering Seismology, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger. London: Academic Press.

———. 1981. “Near-Source Attenuation of Peak Horizontal Acceleration.” Bulletin of the Seismological Society of America 71 (6): 2039–70.

———. 1985. “Strong Motion Attenuation Relations: A Ten-Year Perspective.” Earthquake Spectra 1 (4): 759–804.

———. 1989. “The Dependence of Peak Horizontal Acceleration on Magnitude, Distance, and Site Effects for Small-Magnitude Earthquakes in California and Eastern North America.” Bulletin of the Seismological Society of America 79 (5): 1311–46.

———. 1990. “Empirical Prediction of Near-Source Soil and Soft-Rock Ground Motion for the Diablo Canyon Power Plant Site, San Luis Obispo County, California.” Dames & Moore, Evergreen, Colorado.

———. 1993. “Empirical Prediction of Near-Source Ground Motion from Large Earthquakes.” In Proceedings of the International Workshop on Earthquake Hazard and Large Dams in the Himalaya. Indian National Trust for Art; Cultural Heritage, New Delhi, India.

———. 2007. “Validation and Update of Hybrid Empirical Ground Motion (Attenuation) Relations for the CEUS.” Final Technical Report. Beaverton, USA: ABS Consulting, Inc. (EQECAT).

Campbell, K. W., and Y. Bozorgnia. 2003a. “Erratum: Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra.” Bulletin of the Seismological Society of America 93 (3): 1413.

———. 2003b. “Erratum: Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra.” Bulletin of the Seismological Society of America 93 (4): 1872.

———. 2003c. “Erratum: Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra.” Bulletin of the Seismological Society of America 94 (6): 2417.

———. 2003d. “Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra.” Bulletin of the Seismological Society of America 93 (1): 314–31.

———. 2007. “Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters.” PEER Report 2007/02. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 2008a. “Empirical Ground Motion Model for Shallow Crustal Earthquakes in Active Tectonic Environments Developed for the NGA Project.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

———. 2008b. “NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and \(5\%\) Damped Linear Elastic Response Spectra for Periods Ranging from \(0.01\) to \(10\s\).” Earthquake Spectra 24 (1): 139–71. https://doi.org/10.1193/1.2857546.

———. 2013. “NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, and 5%-Damped Elastic Pseudo-Acceleration Response Spectra for Periods Ranging from \(0.01\) to \(10\,\mathrm{sec}\).” 2013/06. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 1994. “Near-Source Attenuation of Peak Horizontal Acceleration from Worldwide Accelerograms Recorded from 1957 to 1993.” In Proceedings of the Fifth U.S. National Conference on Earthquake Engineering, III:283–92.

———. 2000. “New Empirical Models for Predicting Near-Source Horizontal, Vertical, and \(V/H\) Response Spectra: Implications for Design.” In Proceedings of the Sixth International Conference on Seismic Zonation.

———. 2006a. “Campbell-Bozorgnia Next Generation Attenuation (NGA) Relations for PGA, PGV and Spectral Acceleration: A Progress Report.” In Proceedings of the Eighth U.S. National Conference on Earthquake Engineering.

———. 2006b. “Next Generation Attenuation (NGA) Empirical Ground Motion Models: Can They Be Used in Europe?” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

———. 2010a. “Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (\(I_{\mathrm{JMA}}\)) Using the PEER-NGA Strong Motion Database.” 2010/102. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 2010b. “A Ground Motion Prediction Equation for the Horizontal Component of Cumulative Absolute Velocity (CAV) Based on the PEER-NGA Strong Motion Database.” Earthquake Spectra 26 (3): 635–50. https://doi.org/10.1193/1.3457158.

———. 2011. “A Ground Motion Prediction Equation for JMA Instrumental Seismic Intensity for Shallow Crustal Earthquakes in Active Tectonic Regimes.” Earthquake Engineering and Structural Dynamics 40 (4): 413–27. https://doi.org/10.1002/eqe.1027.

———. 2014. “NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5%-Damped Linear Acceleration Response Spectra.” Earthquake Spectra 30 (3): 1087–1115. https://doi.org/10.1193/062913EQS175M.

———. 2019. “Ground Motion Models for the Horizontal Components of Arias Intensity (AI) and Cumulative Absolute Velocity (CAV) Using the NGA-West2 Database.” Earthquake Spectra 35 (3): 1289–1310. https://doi.org/10.1193/090818EQS212M.

Cantavella, J. V., M. Herraiz, M. J. Jiménez, and M. Garcı́a. 2004. “Seismic Attenuation in the SE of the Iberian Peninsula.” In Proceedings of the Asamblea Hispano-Portuguesa de Geodesia Y Geofı́sica.

Carvalho, A. 2008. “Modelação Estocástica Da Acção Sı́smica Em Portugal Continental.” PhD thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal.

Cauzzi, C., B. Edwards, D. Fäh, J. Clinton, S. Wiemer, P. Kästli, G. Cua, and D. Giardini. 2015. “New Predictive Equations and Site Amplification Estimates for the Next-Generation Swiss ShakeMaps.” Geophysical Journal International 200: 421–38. https://doi.org/10.1093/gji/ggu404.

Cauzzi, C., and E. Faccioli. 2008. “Broadband (\(0.05\) to \(20\,\mathrm{s}\)) Prediction of Displacement Response Spectra Based on Worldwide Digital Records.” Journal of Seismology 12 (4): 453–75. https://doi.org/10.1007/s10950-008-9098-y.

———. 2018a. “Anatomy of Sigma of a Global Predictive Model for Ground Motions and Response Spectra.” Bulletin of Earthquake Engineering 16 (5): 1887–1905. https://doi.org/10.1007/s10518-017-0278-4.

———. 2018b. “Correction to: Anatomy of Sigma of a Global Predictive Model for Ground Motions and Response Spectra.” Bulletin of Earthquake Engineering 16 (5): 1907–7. https://doi.org/10.1007/s10518-017-0286-4.

Cauzzi, C., E. Faccioli, R. Paolucci, and M. Villani. 2008. “Long-Period Ground Motion Evaluation from a Large Worldwide Digital Strong Motion Database.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Cauzzi, C., E. Faccioli, V. Poggi, D. Fäh, and B. Edwards. 2011. “Prediction of Long-Period Displacement Response Spectra for Low-to-Moderate Seismicity Regions: Merging the Swiss Earthquake Waveform Archive with a Global Fully Digital Strong-Motion Dataset.” In Fourth IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion. University of California Santa Barbara, USA.

Cauzzi, C., E. Faccioli, M. Vanini, and A. Bianchini. 2015. “Updated Predictive Equations for Broadband (\(0.01\)\(10\s\)) Horizontal Response Spectra and Peak Ground Motions, Based on a Global Dataset of Digital Acceleration Records.” Bulletin of Earthquake Engineering 13 (6): 1587–1612. https://doi.org/10.1007/s10518-014-9685-y.

Cauzzi, C. V. 2008. “Broadband Empirical Prediction of Displacement Response Spectra Based on Worldwide Digital Records.” PhD thesis, Politecnico di Milano.

Chandler, A. M., and N. T. K. Lam. 2002. “Intensity Attenuation Relationship for the South China Region and Comparison with the Component Attenuation Model.” Journal of Asian Earth Sciences 20 (7): 775–90.

Chang, T.-Y., F. Cotton, and J. Angelier. 2001. “Seismic Attenuation and Peak Ground Acceleration in Taiwan.” Bulletin of the Seismological Society of America 91 (5): 1229–46.

Chang, Y.-W., W.-Y. Jean, and C.-H. Loh. 2012. “A Comparison of NGA Ground-Motion Prediction Models with Taiwan Models and Data.” In Proceedings of Fifteenth World Conference on Earthquake Engineering.

Chao, S.-H., and Y.-H. Chen. 2019. “A Novel Regression Analysis Method for Randomly Truncated Strong Motion Data.” Earthquake Spectra 35 (2): 977–1001. https://doi.org/10.1193/022218EQS044M.

Chao, S.-H., B. Chiou, C.-C. Hsu, and P.-S. Lin. 2020. “A Horizontal Ground-Motion Model for Crustal and Subduction Earthquakes in Taiwan.” Earthquake Spectra 36 (2): 463–506. https://doi.org/10.1177/8755293020919415.

Chapman, M. C. 1999. “On the Use of Elastic Input Energy for Seismic Hazard Analysis.” Earthquake Spectra 15 (4): 607–35.

Chen, L. 2008. “Ground Motion Attenuation Relationships Based on Chinese and Japanese Strong Ground Motion Data.” Master’s thesis, ROSE School, Pavia, Italy.

Chen, L., and E. Faccioli. 2013. “Single-Station Standard Deviation Analysis of 2010–2012 Strong-Motion Data from the Canterbury Region, New Zealand.” Bulletin of Earthquake Engineering 11 (5): 1617–32. https://doi.org/10.1007/s10518-013-9454-3.

Chen, S.-Z., and G. M. Atkinson. 2002. “Global Comparison of Earthquake Source Spectra.” Bulletin of the Seismological Society of America 92 (3): 885–95.

Chen, Y.-H., and C.-C. P. Tsai. 2002. “A New Method for Estimation of the Attenuation Relationship with Variance Components.” Bulletin of the Seismological Society of America 92 (5): 1984–91.

Chen, Y., and Y.-X. Yu. 2008a. “The Development of Attenuation Relations in the Rock Sites for Periods (\({T}=0.04\sim 10\s\), \(\xi=0.005\), \(0.02\), \(0.07\), \(0.1\) & \(0.2\)) Based on NGA Database.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

———. 2008b. “The Development of Attenuation Relations in the Rock Sites for Periods (\({T}=0.04\sim 10\s\), \(\xi=0.05\)) Based on NGA Database.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Cheng, Y. 2013. “Intensity Measures for Seismic Response Prediction and Associated Ground Motion Selection and Modification.” PhD thesis, Sapienza University of Rome.

Cheng, Y., A. Lucchini, and F. Mollaioli. 2014. “Proposal of New Ground-Motion Prediction Equations for Elastic Input Energy Spectra.” Earthquakes and Structures 7 (4): 485–510. https://doi.org/10.12989/eas.2014.7.4.485.

Chiaruttini, C., and L. Siro. 1981. “The Correlation of Peak Ground Horizontal Acceleration with Magnitude, Distance, and Seismic Intensity for Friuli and Ancona, Italy, and the Alpide Belt.” Bulletin of the Seismological Society of America 71 (6): 1993–2009.

Chiou, B., R. Darragh, N. Gregor, and W. Silva. 2008. “NGA Project Strong-Motion Database.” Earthquake Spectra 24 (1): 23–44. https://doi.org/10.1193/1.2894831.

Chiou, B. S.-J., and R. R. Youngs. 2008. “An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra.” Earthquake Spectra 24 (1): 173–215. https://doi.org/10.1193/1.2894832.

Chiou, B. S. J., and R. R. Youngs. 2013. “Update of the Chiou and Youngs NGA Ground Motion Model for Average Horizontal Component of Peak Ground Motion and Response Spectra.” 2013/07. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 2014. “Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra.” Earthquake Spectra 30 (3): 1117–53. https://doi.org/10.1193/072813EQS219M.

Chiou, B., R. Youngs, N. Abrahamson, and K. Addo. 2010. “Ground-Motion Attenuation Model for Small-to-Moderate Shallow Crustal Earthquakes in California and Its Implications on Regionalization of Ground-Motion Prediction Models.” Earthquake Spectra 26 (4): 907–26. https://doi.org/10.1193/1.3479930.

Choi, Y., and J. P. Stewart. 2005. “Nonlinear Site Amplification as Function of \(30\m\) Shear Wave Velocity.” Earthquake Spectra 21 (1): 1–30.

Chopra, S., and P. Choudhury. 2011. “A Study of Response Spectra for Different Geological Conditions in Gujarat, India.” Soil Dynamics and Earthquake Engineering 31 (11): 1551–64. https://doi.org/10.1016/j.soildyn.2011.06.007.

Chou, C.-C., and C.-M. Uang. 2000. “Establishing Absorbed Energy Spectra — an Attenuation Approach.” Earthquake Engineering and Structural Dynamics 29 (10): 1441–55.

Chousianitis, K., V. Del Gaudio, I. Kalogeras, and A. Ganas. 2014. “Predictive Model of Arias Intensity and Newmark Displacement for Regional Scale Evaluation of Earthquake-Induced Landslide Hazard in Greece.” Soil Dynamics and Earthquake Engineering 65: 11–29. https://doi.org/10.1016/j.soildyn.2014.05.009.

Chousianitis, K., V. Del Gaudio, P. Pierri, and G.-A. Tselentis. 2018. “Regional Ground‐motion Prediction Equations for Amplitude‐, Frequency Response‐, and Duration‐based Parameters for Greece.” Earthquake Engineering and Structural Dynamics 47 (11): 2252–74. https://doi.org/10.1002/eqe.3067.

Chung, J.-K. 2006. “Prediction of Peak Ground Acceleration in Southwestern Taiwan as Revealed by Analysis of CHY Array Data.” Terrestrial Atmospheric and Oceanic Science 17 (1): 139–67.

Climent, A., W. Taylor, M. Ciudad Real, W. Strauch, M. Villagrán, A. Dahle, and H. Bungum. 1994. “Spectral Strong Motion Attenuation in Central America.” 2-17. NORSAR.

Collins, N., R. Graves, G. Ichinose, and P. Somerville. 2006. “Ground Motion Attenuation Relations for the Intermountain West.” Final report. U.S. Geological Survey.

Contreras, V., and R. Boroschek. 2012. “Strong Ground Motion Attenuation Relations for Chilean Subduction Zone Interface Earthquakes.” In Proceedings of Fifteenth World Conference on Earthquake Engineering. Lisbon, Portugal.

Convertito, V., R. De Matteis, A. Romeo, A. Zollo, and G. Iannaccone. 2007. “A Strong Motion Attenuation Relation for Early-Warning Application in the Campania Region (Southern Apennines).” In Earthquake Early Warning Systems, edited by P. Gasparini, G. Manfredi, and J. Zschau, 132–52. Springer.

Convertito, V., N. Maercklin, N. Sharma, and A. Zollo. 2012. “From Induced Seismicity to Direct Time-Dependent Seismic Hazard.” Bulletin of the Seismological Society of America 102 (6): 2563–73. https://doi.org/10.1785/0120120036.

Coppersmith, K., J. Bommer, K. Hanson, J. Unruh, R. Coppersmith, L. Wolf, B. Youngs, et al. 2014. “Hanford Sitewide Probabilistic Seismic Hazard Analysis.” PNNL-23361. Richland, Washington 99352, USA: Pacific Northwest National Laboratory.

Cornell, C. A., H. Banon, and A. F. Shakal. 1979. “Seismic Motion and Response Prediction Alternatives.” Earthquake Engineering and Structural Dynamics 7 (4): 295–315.

Costa, G., P. Suhadolc, A. Delise, L. Moratto, E. Furlanetto, and F. Fitzko. 2006. “Estimation of Site Effects at Some Stations of the Friuli (NE Italy) Accelerometric Network (RAF).” In Proceedings of Third International Symposium on the Effects of Surface Geology on Seismic Motion, 1:729–39.

Costa, G., P. Suhadolc, and G. F. Panza. 1998. “The Friuli (NE Italy) Accelerometric Network: Analysis of Low-Magnitude High-Quality Digital Accelerometric Data for Seismological and Engineering Applications.” In Proceedings of the Sixth U.S. National Conference on Earthquake Engineering. Oakland, USA: Earthquake Engineering Research Institute.

Cotton, F., G. Pousse, F. Bonilla, and F. Scherbaum. 2008. “On the Discrepancy of Recent European Ground-Motion Observations and Predictions from Empirical Models: Analysis of KiK-Net Accelerometric Data and Point-Sources Stochastic Simulations.” Bulletin of the Seismological Society of America 98 (5): 2244–61. https://doi.org/10.1785/0120060084.

Cotton, F., F. Scherbaum, J. J. Bommer, and H. Bungum. 2006. “Criteria for Selecting and Adjusting Ground-Motion Models for Specific Target Regions: Application to Central Europe and Rock Sites.” Journal of Seismology 10 (2): 137–56. https://doi.org/10.1007/s10950-005-9006-7.

Cousins, W. J., J. X. Zhao, and N. D. Perrin. 1999. “A Model for the Attenuation of Peak Ground Acceleration in New Zealand Earthquakes Based on Seismograph and Accelerograph Data.” Bulletin of the New Zealand Society for Earthquake Engineering 32 (4): 193–220.

Cremen, G., A. Gupta, and J. Baker. 2017. “Evaluation of Ground Motion Intensities from Induced Earthquakes Using ‘Did You Feel It?’ Data.” In Proceedings of Sixteenth World Conference on Earthquake Engineering.

Cremen, G., M. J. Werner, and B. Baptie. 2020. “A New Procedure for Evaluating Ground-Motion Models, with Application to Hydraulic-Fracture-Induced Seismicity in the United Kingdom.” Bulletin of the Seismological Society of America 110 (5): 2380–97. https://doi.org/10.1785/0120190238.

Crouse, C. B. 1991. “Ground-Motion Attenuation Equations for Earthquakes on the Cascadia Subduction Zones.” Earthquake Spectra 7 (2): 201–36.

Crouse, C. B., and J. W. McGuire. 1996. “Site Response Studies for Purpose of Revising NEHRP Seismic Provisions.” Earthquake Spectra 12 (3): 407–39.

Crouse, C. B., Y. K. Vyas, and B. A. Schell. 1988. “Ground Motion from Subduction-Zone Earthquakes.” Bulletin of the Seismological Society of America 78 (1): 1–25.

Crowell, B. W., D. Melgar, Y. Bock, J. S. Haase, and J. Geng. 2013. “Earthquake Magnitude Scaling Using Seismogeodetic Data.” Geophysical Research Letters 40: 6089–94. https://doi.org/10.1002/2013GL058391.

Cua, G., and T. H. Heaton. 2010. “Characterizing Average Properties of Southern California Ground Motion Amplitudes and Envelopes.” Bulletin of the Seismological Society of America.

Cua, G., D. J. Wald, T. I. Allen, D. Garcia, C. B. Worden, M. Gerstenberger, K. Lin, and K. Marano. 2010. “‘Best Practices’ for Using Macroseismic Intensity and Ground Motion Intensity Conversion Equations for Hazard and Loss Models in GEM1.” 2010-4. GEM Foundation, Pavia, Italy.

Cui, J. W., J. G. Zhang, D. Gao, J. X. Duan, and T. Wang. 2012. “The Ground Motion Attenuation Relation for the Mountainous Area in Sichuan and Yunnan.” In Proceedings of Fifteenth World Conference on Earthquake Engineering.

Çağnan, Z., S. Akkar, and P. Gülkan. 2011. “A Predictive Ground-Motion Model for Turkey and Its Comparison with Recent Local and Global GMPEs.” In Earthquake Data in Engineering Seismology: Predictive Models, Data Management and Networks, 39–52. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0152-6\_4.

Çağnan, Z., S. Akkar, Ö Kale, and A. Sandıkkaya. 2017a. “A Model for Predicting Vertical Component Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and 5% Damped Pseudospectral Acceleration (PSA) for Europe and the Middle East.” Bulletin of Earthquake Engineering 15 (7): 2617–43. https://doi.org/10.1007/s10518-016-0063-9.

———. 2017b. “Erratum to: A Model for Predicting Vertical Component Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and 5% Damped Pseudospectral Acceleration (PSA) for Europe and the Middle East.” Bulletin of Earthquake Engineering 15 (12): 5623–4. https://doi.org/10.1007/s10518-017-0209-4.

Dahle, A., H. Bugum, and L. B. Kvamme. 1990. “Attenuation Modelling Based on Intraplate Earthquake Recordings.” In Proceedings of Ninth European Conference on Earthquake Engineering, 4-A:121–29.

Dahle, A., H. Bungum, and L. B. Kvamme. 1991. “Empirically Derived PSV Spectral Attenuation Models for Intraplate Conditions.” European Earthquake Engineering 3: 42–52.

———. 1990. “Attenuation Models Inferred from Intraplate Earthquake Recordings.” Earthquake Engineering and Structural Dynamics 19 (8): 1125–41.

Dahle, A., A. Climent, W. Taylor, H. Bungum, P. Santos, M. Ciudad Real, C. Linholm, W. Strauch, and F. Segura. 1995. “New Spectral Strong Motion Attenuation Models for Central America.” In Proceedings of the Fifth International Conference on Seismic Zonation, II:1005–12.

D’Amico, M., G. Lanzano, M. Santulin, R. Puglia, C. Felicetta, M. M. Tiberti, A. A. Gomez-Capera, and E. Russo. 2018. “Hybrid GMPEs for Region-Specific PSHA in Southern Italy.” Geosciences 8 (217). https://doi.org/10.3390/geosciences8060217.

D’Amico, S., A. Akinci, and L. Malagnini. 2012. “Predictions of High-Frequency Ground-Motion in Taiwan Based on Weak Motion Data.” Geophysical Journal International 189 (1): 611–28. https://doi.org/10.1111/j.1365-246X.2012.05367.x.

D’Amico, S., A. Akinci, and M. Pischiutta. 2018. “High-Frequency Ground-Motion Parameters from Weak-Motion Data in the Sicily Channel and Surrounding Regions.” Geophysical Journal International 214 (1): 148–63. https://doi.org/10.1093/gji/ggy107.

Danciu, L. 2006. “Development of a System to Assess the Earthquake Damage Potential for Buildings: Intensiometer.” PhD thesis, Laboratory of Seismology, Department of Geology, University of Patras, Greece.

Danciu, L., and G.-A. Tselentis. 2007a. “Engineering Ground-Motion Parameters Attenuation Relationships for Greece.” Bulletin of the Seismological Society of America 97 (1B): 162–83. https://doi.org/10.1785/0120040087.

———. 2007b. “Engineering Ground-Motion Parameters Attenuation Relationships for Greece.” In Proceedings of the International Symposium on Seismic Risk Reduction: The JICA Technical Cooperation Project in Romania, 327–34.

Darzi, A., M. R. Zolfaghari, C. Cauzzi, and D. Fäh. 2019. “An Empirical Ground-Motion Model for Horizontal PGV, PGA, and \(5\%\) Damped Elastic Response Spectra (\(0.01\)\(10\,\mathrm{s}\)) in Iran.” Bulletin of the Seismological Society of America 109 (3): 1041–57. https://doi.org/10.1785/0120180196.

Das, D., and V. K. Gupta. 2010. “Scaling of Response Spectrum and Duration for Aftershocks.” Soil Dynamics and Earthquake Engineering 30: 724–35. https://doi.org/10.1016/j.soildyn.2010.03.003.

Das, S., I. D. Gupta, and V. K. Gupta. 2002. “A New Attenuation Model for North-East India.” In Proceedings of the Twelfth Symposium of Earthquake Engineering, Roorkee, India, 151–58.

———. 2006. “A Probabilistic Seismic Hazard Analysis of Northeast India.” Earthquake Spectra 22 (1): 1–27. https://doi.org/10.1193/1.2163914.

Davenport, A. J. 1972. “A Statistical Relationship Between Shock Amplitude, Magnitude, and Epicentral Distance and Its Appplication to Seismic Zoning.” Engineering Science Research Report BLWT-4-72. Western Ontario University.

Dawood, H. M., A. Rodriguez-Marek, J. Bayless, C. Goulet, and E. Thompson. 2016. “A Flatfile for the KiK-Net Database Processed Using an Automated Protocol.” Earthquake Spectra 32 (2): 1281–1302.

de Almeida, A. A. D., M. Assump cão, J. J. Bommer, S. Drouet, C. Riccomini, and C. L. M. Prates. 2019. “Probabilistic Seismic Hazard Analysis for a Nuclear Power Plant Site in Southeast Brazil.” Journal of Seismology 23 (1): 1–23. https://doi.org/10.1007/s10950-018-9755-8.

Deif, A., A. Abed, K. Abdel-Rahman, and E. A. Moneim. 2011. “Strong Ground Motion Attenuation in Aswan Area, Egypt.” Arabian Journal of Geosciences 4: 855–61. https://doi.org/10.1007/s12517-009-0103-8.

De Luca, F. 2011. “Records, Capacity Curve Fits and Reinforced Concrete Damage States Within a Performance Based Earthquake Engineering Framework.” PhD thesis, University of Naples Federico II, Italy.

De Luca, F., I. Iervolino, G. Ameri, F. Pacor, and D. Bindi. 2011. “Prediction Equations for Nonlinear SDOF Response from the ITalian ACcelerometric Archive: Preliminary Results.” In ANIDIS. Bari, Italy.

De Natale, G., E. Faccioli, and A. Zollo. 1988. “Scaling of Peak Ground Motions from Digital Recordings of Small Earthquakes at Campi Flegrei, Southern Italy.” Pure and Applied Geophysics 126 (1): 37–53.

Denham, D., and G. R. Small. 1971. “Strong Motion Data Centre: Bureau of Mineral Resources, Canada.” Bulletin of the New Zealand Society for Earthquake Engineering 4 (1): 15–30.

Denham, D., G. R. Small, and I. B. Everingham. 1973. “Some Strong-Motion Results from Papua New Guinea 1967–1972.” In Proceedings of Fifth World Conference on Earthquake Engineering, 2:2324–7.

Derakhshani, A., and A. H. Foruzan. 2019. “Predicting the Principal Strong Ground Motion Parameters: A Deep Learning Approach.” Applied Soft Computing Journal 80 (July): 192–201. https://doi.org/10.1016/j.asoc.2019.03.029.

Derras, B., P.-Y. Bard, and F. Cotton. 2017. “\(V_{S30}\), Slope, \(H_{800}\) and \(f_0\): Performance of Various Site-Condition Proxies in Reducing Ground-Motion Aleatory Variability and Predicting Nonlinear Site Response.” Earth, Planets and Space 69 (133). https://doi.org/10.1186/s40623-017-0718-z.

———. 2016. “Site-Condition Proxies, Ground Motion Variability, and Data-Driven GMPEs: Insights from the NGA-West2 and RESORCE Data Sets.” Earthquake Spectra 32 (4): 2027–56. https://doi.org/10.1193/060215EQS082M.

Derras, B., F. Cotton, and P.-Y. Bard. 2014. “Towards Fully Data Driven Ground-Motion Prediction Models for Europe.” Bulletin of Earthquake Engineering 12 (1): 495–516. https://doi.org/10.1007/s10518-013-9481-0.

Devillers, C., and B. Mohammadioun. 1981. “French Methodology for Determining Site-Adapted SMS (Séisme Majoré de Sécurité) Spectra.” In Transactions of the 6th International Conference on Structural Mechanics in Reactor Technology. Vol. K(a).

Dhakal, Y. P., N. Takai, and T. Sasatani. 2008. “Path Effects on Prediction Equations of Pseudo-Velocity Response Spectra in Northern Japan.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Dhanya, J., and S. T. G. Raghukanth. 2018. “Ground Motion Prediction Model Using Artificial Neural Network.” Pure and Applied Geophysics 175 (3): 1035–64. https://doi.org/10.1007/s00024-017-1751-3.

———. 2020. “Neural Network-Based Hybrid Ground Motion Prediction Equations for Western Himalayas and North-Eastern India.” Acta Geophysica 68: 303–24. https://doi.org/10.1007/s11600-019-00395-y.

Dhanya, J., D. Sagar, and S. T. G. Raghukanth. 2019. “Predictive Models for Ground Motion Parameters Using Artificial Neural Network.” In Recent Advances in Structural Engineering, edited by A. Rama Mohan Rao and K. Ramanjaneyulu. Vol. 2. Lecture Notes in Civil Engineering 12. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-0365-4\_8.

Di Alessandro, C., L. F. Bonilla, D. M. Boore, A. Rovelli, and O. Scotti. 2012. “Predominant-Period Site Classification for Response Spectra Prediction Equations in Italy.” Bulletin of the Seismological Society of America 102 (2): 680–95. https://doi.org/10.1785/0120110084.

Dobry, R., I. M. Idriss, and E. Ng. 1978. “Duration Characteristics of Horizontal Components of Strong-Motion Earthquake Records.” Bulletin of the Seismological Society of America 68 (5): 1487–1520.

Donahue, J. L., and N. A. Abrahamson. 2014. “Simulation-Based Hanging Wall Effects.” Earthquake Spectra 30 (3): 1269–84. https://doi.org/10.1193/071113EQS200M.

Donovan, N. C. 1973. “A Statistical Evaluation of Strong Motion Data Including the February 9, 1971 San Fernando Earthquake.” In Proceedings of Fifth World Conference on Earthquake Engineering, 1:1252–61.

Donovan, N. C., and A. E. Bornstein. 1978. “Uncertainties in Seismic Risk Analysis.” Journal of the Geotechnical Engineering Division, ASCE 104 (GT7): 869–87.

Dost, B., T. van Eck, and H. Haak. 2004. “Scaling Peak Ground Acceleration and Peak Ground Velocity Recorded in The Netherlands.” Bollettino Di Geofisica Teorica Ed Applicata 45 (3): 153–68.

Douglas, J. 2003. “Earthquake Ground Motion Estimation Using Strong-Motion Records: A Review of Equations for the Estimation of Peak Ground Acceleration and Response Spectral Ordinates.” Earth-Science Reviews 61 (1–2): 43–104.

———. 2004a. “Ground Motion Estimation Equations 1964–2003: Reissue of ESEE Report No. 01-1: ‘A Comprehensive Worldwide Summary of Strong-Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000)’ with Corrections and Additions.” 04-001-SM. Department of Civil; Environmental Engineering; Imperial College of Science, Technology; Medicine; London; U.K. http://www3.imperial.ac.uk/civilengineering/research/researchnewsandreports/researchreports.

———. 2010a. “Assessing the Epistemic Uncertainty of Ground-Motion Predictions.” In Proceedings of the Ninth U.S. National and 10th Canadian Conference on Earthquake Engineering: Reaching Beyond Borders.

———. 2010b. “Consistency of Ground-Motion Predictions from the Past Four Decades.” Bulletin of Earthquake Engineering 8 (6): 1515–26. https://doi.org/10.1007/s10518-010-9195-5.

———. 2012. “Consistency of Ground-Motion Predictions from the Past Four Decades: Peak Ground Velocity and Displacement, Arias Intensity and Relative Significant Duration.” Bulletin of Earthquake Engineering 10 (5): 1339–56. https://doi.org/10.1007/s10518-012-9359-6.

———. 2014. “Preface of Special Issue: A New Generation of Ground-Motion Models for Europe and the Middle East.” Bulletin of Earthquake Engineering 12 (1): 307–10. https://doi.org/10.1007/s10518-013-9535-3.

———. 2018a. “Capturing Geographically-Varying Uncertainty in Earthquake Ground Motion Models or What We Think We Know May Change.” In Recent Advances in Earthquake Engineering in Europe, edited by K. Pitilakis, 46:153–81. Geotechnical, Geological and Earthquake Engineering. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-75741-4_6.

———. 2001a. “A Comprehensive Worldwide Summary of Strong-Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000).” ESEE Report 01-1. Department of Civil; Environmental Engineering, Imperial College, London.

———. 2001b. “A Critical Reappraisal of Some Problems in Engineering Seismology.” PhD thesis, University of London.

———. 2002. “Errata of and Additions to ESEE Report No. 01-1: ‘A Comprehensive Worldwide Summary of Strong-Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000)’.” Dept. Report. Department of Civil; Environmental Engineering, Imperial College, London.

———. 2004b. “An Investigation of Analysis of Variance as a Tool for Exploring Regional Differences in Strong Ground Motions.” Journal of Seismology 8 (4): 485–96.

———. 2006. “Errata of and Additions to ‘Ground Motion Estimation Equations 1964–2003’.” Intermediary report RP-54603-FR. BRGM, Orléans, France. http://www.brgm.fr/publication/rechRapportSP.jsp.

———. 2007. “On the Regional Dependence of Earthquake Response Spectra.” ISET Journal of Earthquake Technology 44 (1): 71–99.

———. 2008. “Further Errata of and Additions to ‘Ground Motion Estimation Equations 1964–2003’.” Final report RP-56187-FR. BRGM, Orléans, France. http://www.brgm.fr/publication/rechRapportSP.jsp.

———. 2011. “Ground-Motion Prediction Equations 1964–2010.” Final report RP-59356-FR. BRGM, Orléans, France. http://www.brgm.fr/publication/rechRapportSP.jsp.

———. 2018b. “Calibrating the Backbone Approach for the Development of Earthquake Ground Motion Models.” In Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations: Issues and Challenges Towards Full Seismic Risk Analysis (2nd Best Pshani). Cadarache Chateau, France.

Douglas, J., S. Akkar, G. Ameri, P.-Y. Bard, D. Bindi, J. J. Bommer, S. S. Bora, et al. 2014. “Comparisons Among the Five Ground-Motion Models Developed Using RESORCE for the Prediction of Response Spectral Accelerations Due to Earthquakes in Europe and the Middle East.” Bulletin of Earthquake Engineering 12 (1): 341–58. https://doi.org/10.1007/s10518-013-9522-8.

Douglas, J., and H. Aochi. 2008. “A Survey of Techniques for Predicting Earthquake Ground Motions for Engineering Purposes.” Surveys in Geophysics 29 (3): 187–220. https://doi.org/10.1007/s10712-008-9046-y.

Douglas, J., and D. M. Boore. 2011. “High-Frequency Filtering of Strong-Motion Records.” Bulletin of Earthquake Engineering 9 (2): 395–409. https://doi.org/10.1007/s10518-010-9208-4.

Douglas, J., H. Bungum, and F. Scherbaum. 2006. “Ground-Motion Prediction Equations for Southern Spain and Southern Norway Obtained Using the Composite Model Perspective.” Journal of Earthquake Engineering 10 (1): 33–72.

Douglas, J., and B. Edwards. 2016. “Recent and Future Developments in Earthquake Ground Motion Estimation.” Earth-Science Reviews 160: 203–19. https://doi.org/10.1016/j.earscirev.2016.07.005.

Douglas, J., B. Edwards, V. Convertito, N. Sharma, A. Tramelli, D. Kraaijpoel, B. M. Cabrera, N. Maercklin, and C. Troise. 2013. “Predicting Ground Motion from Induced Earthquakes in Geothermal Areas.” Bulletin of the Seismological Society of America 103 (3): 1875–97. https://doi.org/10.1785/0120120197.

Douglas, J., and H. Halldórsson. 2010. “On the Use of Aftershocks When Deriving Ground-Motion Prediction Equations.” In Proceedings of the Ninth U.S. National and 10th Canadian Conference on Earthquake Engineering: Reaching Beyond Borders.

Douglas, J., and P. M. Smit. 2001. “How Accurate Can Strong Ground Motion Attenuation Relations Be?” Bulletin of the Seismological Society of America 91 (6): 1917–23.

Dowrick, D. J. 1992. “Attenuation of Modified Mercalli Intensity in New Zealand Earthquakes.” Earthquake Engineering and Structural Dynamics 21 (3): 181–96.

Dowrick, D. J., and D. A. Rhoades. 1999. “Attenuation of Modified Mercalli Intensity in New Zealand Earthquakes.” Bulletin of the New Zealand Society for Earthquake Engineering 32 (4): 55–89.

———. 2005. “Revised Models for Attenuation of Modified Mercalli Intensity in New Zealand Earthquakes.” Bulletin of the New Zealand Society for Earthquake Engineering 38 (4): 185–214.

Dowrick, D. J., and S. Sritharan. 1993. “Attenuation of Peak Ground Accelerations in Some Recent New Zealand Earthquakes.” Bulletin of the New Zealand National Society for Earthquake Engineering 26 (1): 3–13.

Draper, N. R., and H. Smith. 1981. Applied Regression Analysis. 2nd ed. John Wiley & Sons.

Drouet, S. 2017. “Erratum to: Regional Stochastic GMPEs in Low-Seismicity Areas: Scaling and Aleatory Variability Analysis — Application to the French Alps.” Bulletin of the Seismological Society of America 107 (1): 501. https://doi.org/10.1785/0120160234.

Drouet, S., and F. Cotton. 2015. “Regional Stochastic GMPEs in Low-Seismicity Areas: Scaling and Aleatory Variability Analysis — Application to the French Alps.” Bulletin of the Seismological Society of America 105 (4): 1883–1902. https://doi.org/10.1785/0120140240.

Du, W. 2017. “An Empirical Model for the Mean Period (\(T_m\)) of Ground Motions Using the NGA-West2 Database.” Bulletin of Earthquake Engineering 15: 2673–93. https://doi.org/10.1007/s10518-017-0088-8.

Du, W., and G. Wang. 2013. “A Simple Ground-Motion Prediction Model for Cumulative Absolute Velocity and Model Validation.” Earthquake Engineering and Structural Dynamics 42: 1189–1202. https://doi.org/10.1002/eqe.2266.

Eberhart-Phillips, D., and G. McVerry. 2003. “Estimating Slab Earthquake Response Spectra from a 3D \({Q}\) Model.” Bulletin of the Seismological Society of America 93 (6): 2649–63.

Edwards, B., H. Crowley, R. Pinho, and J. J. Bommer. 2021. “Seismic Hazard and Risk Due to Induced Earthquakes at a Shale Gas Site.” Bulletin of the Seismological Society of America 111 (2): 875–97. https://doi.org/10.1785/0120200234.

Edwards, B., and J. Douglas. 2013. “Selecting Ground-Motion Models Developed for Induced Seismicity in Geothermal Areas.” Geophysical Journal International 195: 1314–22. https://doi.org/10.1093/gji/ggt310.

Edwards, B., and D. Fäh. 2013a. “A Stochastic Ground-Motion Model for Switzerland.” Bulletin of the Seismological Society of America 103 (1). https://doi.org/10.1785/0120110331.

———. 2013b. “Measurements of Stress Parameter and Site Attenuation from Recordings of Moderate to Large Earthquakes in Europe and the Middle East.” Geophysical Journal International 194 (2): 1190–1202. https://doi.org/10.1093/gji/ggt158.

Edwards, B., and A. Rietbrock. 2009. “A Comparative Study on Attenuation and Source-Scaling Relations in the Kanto, Tokai, and Chubu Regions of Japan, Using Data from Hi-Net and KiK-Net.” Bulletin of the Seismological Society of America 99 (4): 2435–60. https://doi.org/10.1785/0120080292.

Electric Power Research Institute. 1988. “Engineering Model of Earthquake Ground Motion for Eastern North America.” Final report NP-6074.

———. 1993a. “Empirical Ground Motion Data in Eastern North America.” In Guidelines for Determining Design Basis Ground Motions, edited by J. F. Schneider. Vols. EPRI TR-102293.

———. 1993b. “Engineering Model of Strong Ground Motions from Earthquakes in the Central and Eastern United States.” In Guidelines for Determining Design Basis Ground Motions, edited by J. F. Schneider. Vols. EPRI TR-102293.

———. 2013. “EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project.” 3002000717. EPRI, Palo Alto, CA, USA.

———. 2004. “CEUS Ground Motion Project Final Report.” 1009684. EPRI, Palo Alto, CA, Dominion Energy, Glen Allen, VA, Entergy Nuclear, Jackson, MS,; Exelon Generation Company, Kennett Square, PA.

El Hassan, Y. M. 1994. “Structural Response to Earthquake Ground Motion in Sudan.” Master’s thesis, University of Khartoum, Sudan.

Emami, S. M. R., Y. Iwao, and T. Harada. 1996. “A Method for Prediction of Peak Horizontal Acceleration by Artificial Neural Networks.” In Proceedings of Eleventh World Conference on Earthquake Engineering.

Emolo, A., V. Convertito, and L. Cantore. 2011. “Ground-Motion Predictive Equations for Low-Magnitude Earthquakes in the Campania-Lucania Area, Southern Italy.” Journal of Geophysics and Engineering 8 (1): 46–60. https://doi.org/10.1088/1742-2132/8/1/007.

Emolo, A., N. Sharma, G. Festa, A. Zollo, V. Convertito, J.-H. Park, H.-C. Chi, and I.-S. Lim. 2015. “Ground-Motion Prediction Equations for South Korea Peninsula.” Bulletin of the Seismological Society of America 105 (5): 2625–40. https://doi.org/10.1785/0120140296.

Engdahl, E. R., R. van der Hilst, and R. Buland. 1998. “Global Teleseismic Earthquake Relocation with Improved Travel Times Procedures for Depth Determination.” Bulletin of the Seismological Society of America 88: 722–43.

Erdem, J. E., J. Boatwright, and J. B. Fletcher. 2019. “Ground‐Motion Attenuation in the Sacramento–San Joaquin Delta, California, from 14 Bay Area Earthquakes, Including the 2014 M 6.0 South Napa Earthquake.” Bulletin of the Seismological Society of America 109 (3): 1025–33. https://doi.org/10.1785/0120180182.

Erdik, M., V. Doyuran, N. Akkas, and P. Gulkan. 1985. “A Probabilistic Assessment of the Seismic Hazard in Turkey.” Tectonophysics 117: 295–344.

Erken, A., G. Ş. Nomaler, and Z. Gündüz. 2018. “The Development of Attenuation Relationship for Northwest Anatolia Region.” Arabian Journal of Geosciences 11 (21). https://doi.org/10.1007/s12517-017-3359-4.

Espinosa, A. F. 1980. “Attenuation of Strong Horizontal Ground Accelerations in the Western United States and Their Relation to \({M}_{L}\).” Bulletin of the Seismological Society of America 70 (2): 583–616.

Esteva, L. 1970. “Seismic Risk and Seismic Design.” In Seismic Design for Nuclear Power Plants, edited by R. J. Hansen, 142–82. The M.I.T. Press.

———. 1974. “Geology and Probability in the Assessment of Seismic Risk.” In Proceedings of the 2nd International Conference of the Association of Engineering Geology. Sao Paulo.

Esteva, L., and E. Rosenblueth. 1964. “Espectros de Temblores a Distancias Moderadas Y Grandes.” Boletin Sociedad Mexicana de Ingenieria Sesmica 2: 1–18.

Esteva, L., and R. Villaverde. 1973. “Seismic Risk, Design Spectra and Structural Reliability.” In Proceedings of Fifth World Conference on Earthquake Engineering, 2:2586–96.

Faccioli, E. 1978. “Response Spectra for Soft Soil Sites.” In Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference: Earthquake Engineering and Soil Dynamics, I:441–56.

———. 1979. “Engineering Seismic Risk Analysis of the Friuli Region.” Bollettino Di Geofisica Teorica Ed Applicata XXI (83): 173–90.

———. 1983. “Measures of Strong Ground Motion Derived from a Stochastic Source Model.” Soil Dynamics and Earthquake Engineering 2 (3): 135–49.

Faccioli, E., and D. Agalbato. 1979. “Attenuation of Strong-Motion Parameters in the 1976 Friuli, Italy, Earthquakes.” In Proceedings of the Second U.S. National Conference on Earthquake Engineering, 233–42.

Faccioli, E., A. Bianchini, and M. Villani. 2010. “New Ground Motion Prediction Equations for \({T}>1\s\) and Their Influence on Seismic Hazard Assessment.” In Proceedings of the University of Tokyo Symposium on Long-Period Ground Motion and Urban Disaster Mitigation.

Faccioli, E., and C. Cauzzi. 2006. “Macroseismic Intensities for Seismic Scenarios, Estimated from Instrumentally Based Correlations.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Fajfar, P., and I. Perus. 1997. “A Non-Parametric Approach to Attenuation Relations.” Journal of Earthquake Engineering 1 (2): 319–40.

Fang, R., J. Zheng, J. Geng, Y. Shu, C. Shi, and J. Liu. 2021. “Earthquake Magnitude Scaling Using Peak Ground Velocity Derived from High-Rate GNSS Observations.” Seismological Research Letters 92 (1): 227–37. https://doi.org/10.1785/0220190347.

Farajpour, Z., and S. Pezeshk. 2021. “A Ground-Motion Prediction Model for Small-to-Moderate Induced Earthquakes for Central and Eastern United States.” Earthquake Spectra. https://doi.org/10.1177/87552930211016014.

Farajpour, Z., S. Pezeshk, and M. Zare. 2019. “A New Empirical Ground-Motion Model for Iran.” Bulletin of the Seismological Society of America 109 (2): 732–44. https://doi.org/10.1785/0120180139.

Fat-Helbary, R., and Y. Ohta. 1994. “Attenuation Models of Seismic Intensity and Peak Ground Acceleration in Egypt.” In Proceedings of the First Cairo Earthquake Engineering Symposium, 55–70.

Felicetta, C., G. Lanzano, M. D’Amico, R. Puglia, L. Luzi, and F. Pacor. 2018. “Ground Motion Model for Reference Rock Sites in Italy.” Soil Dynamics and Earthquake Engineering 110: 276–83. https://doi.org/10.1016/j.soildyn.2018.01.024.

Field, E. H. 2000. “A Modified Ground-Motion Attenuation Relationship for Southern California That Accounts for Detailed Site Classification and a Basin-Depth Effect.” Bulletin of the Seismological Society of America 90 (6B): S209–S221.

Foulser-Piggott, R., and K. Goda. 2014. “New Prediction Equations of Arias Intensity and Cumulative Absolute Velocity for Japanese Earthquakes.” In Proceedings of Second European Conference on Earthquake Engineering and Seismology (a Joint Event of the 15th ECEE & 31st General Assembly of the ESC.

———. 2015. “Ground-Motion Prediction Models for Arias Intensity and Cumulative Absolute Velocity for Japanese Earthquakes Considering Single-Station Sigma and Within-Event Spatial Correlation.” Bulletin of the Seismological Society of America 105 (4): 1903–18. https://doi.org/10.1785/0120140316.

Foulser-Piggott, R., and P. J. Stafford. 2012. “A Predictive Model for Arias Intensity at Multiple Sites and Consideration of Spatial Correlations.” Earthquake Engineering and Structural Dynamics 41 (3): 431–51. https://doi.org/10.1002/eqe.1137.

Frankel, A., C. Mueller, T. Barnhard, D. Perkins, E. V. Leyendecker, N. Dickman, S. Hanson, and M. Hopper. 1996. “National Seismic-Hazard Maps: Documentation June 1996.” Open-File Report 96-532. U.S. Department of the Interior, U.S. Geological Survey.

Free, M. W. 1996. “The Attenuation of Earthquake Strong-Motion in Intraplate Regions.” PhD thesis, University of London.

Free, M. W., N. N. Ambraseys, and S. K. Sarma. 1998. “Earthquake Ground-Motion Attenuation Relations for Stable Continental Intraplate Regions.” ESEE Report 98-1. Department of Civil Engineering, Imperial College, London.

Frisenda, M., M. Massa, D. Spallarossa, G. Ferretti, and C. Eva. 2005. “Attenuation Relationships for Low Magnitude Earthquakes Using Standard Seismometric Records.” Journal of Earthquake Engineering 9 (1): 23–40.

Frohlich, C., and K. D. Apperson. 1992. “Earthquake Focal Mechanisms, Moment Tensors, and the Consistency of Seismic Activity Near Plate Boundaries.” Tectonics 11 (2): 279–96.

Fukushima, S., T. Hayashi, and H. Yashiro. 2007. “Seismic Hazard Analysis Based on the Joint Probability Density Function of PGA and PGV.” In Transactions, SMiRT 19.

Fukushima, Y., C. Berge-Thierry, P. Volant, D.-A. Griot-Pommera, and F. Cotton. 2003. “Attenuation Relation for Western Eurasia Determined with Recent Near-Fault Records from California, Japan and Turkey.” Journal of Earthquake Engineering 7 (4): 573–98.

Fukushima, Y., F. Bonilla, O. Scotti, and J. Douglas. 2007a. “Impact of Site Classification on Deriving Empirical Ground-Motion Prediction Equations: Application to the West Eurasia Dataset.” In 7ème Colloque National AFPS 2007.

Fukushima, Y., L. F. Bonilla, O. Scotti, and J. Douglas. 2007b. “Site Classification Using Horizontal-to-Vertical Response Spectral Ratios and Its Impact When Deriving Empirical Ground Motion Prediction Equations.” Journal of Earthquake Engineering 11 (5): 712–24. https://doi.org/10.1080/13632460701457116.

Fukushima, Y., J.-C. Gariel, and R. Tanaka. 1994. “Prediction Relations of Seismic Motion Parameters at Depth Using Borehole Data.” In Proceedings of Tenth European Conference on Earthquake Engineering, 1:417–22.

———. 1995. “Site-Dependent Attenuation Relations of Seismic Motion Parameters at Depth Using Borehole Data.” Bulletin of the Seismological Society of America 85 (6): 1790–1804.

Fukushima, Y., and T. Tanaka. 1990. “A New Attenuation Relation for Peak Horizontal Acceleration of Strong Earthquake Ground Motion in Japan.” Bulletin of the Seismological Society of America 80 (4): 757–83.

Fukushima, Y., T. Tanaka, and S. Kataoka. 1988. “A New Attenuation Relationship for Peak Ground Acceleration Derived from Strong-Motion Accelerograms.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:343–48.

Fukushima, Y., J. X. Zhao, J. Zhang, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi, et al. 2006. “Attenuation Relations of Strong Ground Motion in Japan Using Site Classification Based on Predominant Period.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Fülöp, L., V. Jussila, R. Aapasuo, T. Vuorinen, and P. Mäntyniemi. 2020. “A Ground=motion Prediction Equation for Fennoscandian Nuclear Installations.” Bulletin of the Seismological Society of America 110 (3): 1211–30. https://doi.org/10.1785/0120190230.

Gallego, M. 2000. “Estimación Del Riesgo Sı́smico En La República de Colombia.” PhD thesis, Universidad Autónoma de México, Mexico City, Mexico.

Gallego, M., and M. Ordaz. 1999. “Construcción de Leyes de Atenuación Para Colombia a Partir de Espectros Fuente Y Teoría de Vibraciones Aleatorias.” Revista Internacional de Ingenierı́a de Estructuras 4 (1): 45–60.

Galluzzo, D., F. Bianco, M. La Rocca, and G. Zonno. 2016. “Ground Motion Observations and Simulation for Local Earthquakes in the Campi Flegrei Volcanic Area.” Bulletin of Earthquake Engineering 14 (7): 1903–16. https://doi.org/10.1007/s10518-015-9770-x.

Gamage, J. P. W. 2015. “Earthquake Ground Motion Models for Sri Lanka.” PhD thesis, College of Engineering; Science, Victoria University, Sri Lanka.

Gandomi, M., M. Soltanpour, M. R. Zolfaghari, and A. H. Gandomi. 2016. “Prediction of Peak Ground Acceleration of Iran’s Tectonic Regions Using a Hybrid Soft Computing Technique.” Geoscience Frontiers 7 (1): 75–82. https://doi.org/10.1016/j.gsf.2014.10.004.

Gao, J.-C., C.-H. Chan, and C.-T. Lee. 2021. “Site-Dependent Ground-Motion Prediction Equations and Uniform Hazard Response Spectra.” Engineering Geology 292 (106241). https://doi.org/10.1016/j.enggeo.2021.106241.

Garcia, S., and M. Romo. 2006. “Machine Learning for Ground-Motion Relations.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Garcia-Fernandez, M., and J. A. Canas. 1992. “Regional Lg-Wave Attenuation and Estimates of Peak Ground Acceleration in the Iberian Peninsula.” In Proceedings of Tenth World Conference on Earthquake Engineering, 1:439–43.

———. 1995. “Regional Peak Ground Acceleration Estimates in the Iberian Peninsula.” In Proceedings of the Fifth International Conference on Seismic Zonation, II:1029–34.

Garcı̀a Blanco, R. M. 2009. “Caracterización Del Potencial Sísmico Y Su Influencia En La Determinación de La Peligrosidad Sı̀smica Probabilista.” PhD thesis, Polythecnical University of Madrid.

Garcı̀a-Fernàndez, M., and J. A. Canas. 1991. “Estimation of Regional Values of Peak Ground Acceleration from Short-Period Seismograms.” In Proceedings of the Fourth International Conference on Seismic Zonation, II:533–39.

Garcı́a, D., S. K. Singh, M. Herráiz, M. Ordaz, and J. F. Pacheco. 2005. “Inslab Earthquakes of Central Mexico: Peak Ground-Motion Parameters and Response Spectra.” Bulletin of the Seismological Society of America 95 (6): 2272–82. https://doi.org/10.1785/0120050072.

Garcı́a-Fernández, M., P. Gehl, M. J. Jiménez, and D. D’Ayala. 2016. “A Pan-European Representative Ground Motion Model.” In 35th General Assembly of the European Seismological Commission.

———. 2019. “Modelling Pan-European Ground Motions for Seismic Hazard Applications.” Bulletin of Earthquake Engineering 17 (6): 2821–40. https://doi.org/10.1007/s10518-019-00605-4.

Garcı́a-Soto, A. D., and M. A. Jaimes. 2017. “Ground-Motion Prediction Model for Vertical Response Spectra from Mexican Interplate Earthquakes.” Bulletin of the Seismological Society of America 107 (2): 887–900. https://doi.org/10.1785/0120160273.

Gardner, J. K., and L. Knopoff. 1974. “Is the Sequence of Earthquakes in Southern California, with Aftershocks Removed, Poissonian ?” Bulletin of the Seismological Society of America 64: 1363–7.

Gaull, B. A. 1988. “Attenuation of Strong Ground Motion in Space and Time in Southwest Western Australia.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:361–66.

Gaull, B. A., M. O. Michael-Leiba, and J. M. W. Rynn. 1990. “Probabilistic Earthquake Risk Maps of Australia.” Australian Journal of Earth Sciences 37: 169–87.

Gehl, P. 2017. “Bayesian Networks for the Multi-Risk Assessment of Road Infrastructure.” PhD thesis, University of London (University College London).

Gehl, P., L. F. Bonilla, and J. Douglas. 2011. “Accounting for Site Characterization Uncertainties When Developing Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 101 (3): 1101–8. https://doi.org/10.1785/0120100246.

Geomatrix Consultants. 1991. “Seismic Ground Motion Study for West San Francisco Bay Bridge.” Report for Caltrans, Division of Structures, Sacramento, California.

GeoPentech. 2015. “Southwestern United States Ground Motion Characterization SSHAC Level 3.” Technical Report Rev. 2.

Ghalehjough, B. K., and R. Mahinroosta. 2020. “Peak Ground Acceleration Prediction by Fuzzy Logic Modeling for Iranian Plateau.” Acta Geophysica 68: 75–89. https://doi.org/10.1007/s11600-019-00394-z.

Ghanat, S. 2011. “Duration Characteristics of the Mean Horizontal Component of Shallow Crustal Earthquake Records in Active Tectonic Regions.” PhD thesis, Arizona State University, USA.

Ghasemi, H., M. Zare, Y. Fukushima, and K. Koketsu. 2009. “An Empirical Spectral Ground-Motion Model for Iran.” Journal of Seismology 13 (4): 499–515. https://doi.org/10.1007/s10950-008-9143-x.

Ghofrani, H., and G. M. Atkinson. 2014. “Ground-Motion Prediction Equations for Interface Earthquake of M7 to M9 Based on Empirical Data from Japan.” Bulletin of Earthquake Engineering 12 (2): 549–71. https://doi.org/10.1007/s10518-013-9533-5.

Ghosh, G. K., and A. K. Mahajan. 2013. “Intensity Attenuation Relation at Chamba-Garhwal Area in North-West Himalaya with Epicentral Distance and Magnitude.” Journal of Earth System Science 122 (1): 107–22.

———. 2011. “Interpretation of Intensity Attenuation Relation of 1905 Kangra Earthquake with Epicentral Distance and Magnitude in the Northwest Himalayan Region.” Journal of the Geological Society of India 77 (June): 511–20. https://doi.org/10.1007/s12594-011-0058-8.

Gianniotis, N., N. Kuehn, and F. Scherbaum. 2014. “Manifold Aligned Ground Motion Prediction Equations for Regional Datasets.” Computers and Geosciences 69 (August): 72–77. https://doi.org/10.1016/j.cageo.2014.04.014.

Gitterman, Y., Y. Zaslavsky, and A. Shapira. 1993. “Analysis of Strong Records in Israel.” In Proceedings of XVIIth Regional European Seminar on Earthquake Engineering, Haifa, Israel.

Goda, K., and G. M. Atkinson. 2009. “Probabilistic Characterization of Spatially Correlated Response Spectra for Earthquakes in Japan.” Bulletin of the Seismological Society of America 99 (5): 3003–20. https://doi.org/10.1785/0120090007.

Goda, K., and H. P. Hong. 2008. “Spatial Correlation of Peak Ground Motions and Response Spectra.” Bulletin of the Seismological Society of America 98 (1): 354–65. https://doi.org/10.1785/0120070078.

Golik, A., and M. J. Mendecki. 2012. “Ground-Motion Prediction Equations for Induced Seismicity in the Main Anticline and Main Syncline, Upper Silesian Coal Basin, Poland.” Acta Geophysica 60 (2): 410–25. https://doi.org/10.2478/s11600-011-0070-9.

Gong, M.-S., and L.-L. Xie. 2005. “Study on Comparison Between Absolute and Relative Input Energy Spectra and Effects of Ductility Factor.” Acta Seismologica Sinica 18 (6): 717–26.

Goto, H., H. Kameda, N. Imanishi, and O. Hashimoto. 1978. “Statistical Analysis of Earthquake Ground Motion with the Effect of Frequency-Content Correction.” In 5th Japan Earthquake Engineering Symposium, 11:49–56.

Goto, H., H. Kameda, and M. Sugito. 1981. “Attenuation and Estimation of Site-Dependent Earthquake Motions.” Journal of Natural Disaster Science 3 (1): 15–31.

Goulet, C. A., Y. Bozorgnia, N. Kuehn, L. Al Atik, R. R. Youngs, R. W. Graves, and G. M. Atkinson. 2017. “NGA-East Ground-Motion Models for the U.S. Geological Survey National Seismic Hazard Maps.” PEER Report 2017/03. University of California, Berkeley, USA: Pacifi c Earthquake Engineering Research Center.

Goulet, C., Y. Bozorgnia, N. Abrahamson, N. Kuehn, L. Al Atik, R. Youngs, and R. Graves. 2018. “Central and Eastern North America Ground-Motion Characterization — NGA-East Final Report.” PEER Report 2018/08. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, USA.

Gómez-Bernal, A., M. A. Lecea, and H. Juárez-Garcı́a. 2012. “Empirical Attenuation Relationship for Arias Intensity in Mexico and Their Relation with the Damage Potential.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Gómez-Soberón, C., A. Tena-Colunga, and M. Ordaz. 2006. “Updated Attenuation Laws in Displacement and Acceleration for the Mexican Pacific Coast as the First Step to Improve Current Design Spectra for Base-Isolated Structures in Mexico.” In Proceedings of the Eighth U.S. National Conference on Earthquake Engineering.

Graizer, V. 2016. “Ground-Motion Prediction Equations for Central and Eastern North America.” Bulletin of the Seismological Society of America 106 (4): 1600–1612. https://doi.org/10.1785/0120150374.

———. 2017. “Alternative (G-16v2) Ground-Motion Prediction Equations for Central and Eastern North America.” Bulletin of the Seismological Society of America 107 (2): 869–86. https://doi.org/10.1785/0120160212.

———. 2018. “GK17 Ground-Motion Prediction Equation for Horizontal PGA and 5% Damped PSA from Shallow Crustal Continental Earthquakes.” Bulletin of the Seismological Society of America 108 (1): 380–98. https://doi.org/10.1785/0120170158.

Graizer, V., and E. Kalkan. 2008. “A Novel Approach to Strong Ground Motion Attenuation Modeling.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

———. 2015. “Update of the Graizer-Kalkan Ground-Motion Prediction Equations for Shallow Crustal Continental Earthquakes.” Open-File Report 2015–1009. U.S. Geological Survey.

———. 2007. “Ground Motion Attenuation Model for Peak Horizontal Acceleration from Shallow Crustal Earthquakes.” Earthquake Spectra 23 (3): 585–613. https://doi.org/10.1193/1.2755949.

———. 2016. “Summary of the GK15 Ground-Motion Prediction Equation for Horizontal PGA and 5% Damped PSA from Shallow Crustal Continental Earthquakes.” Bulletin of the Seismological Society of America 106 (2): 687–707. https://doi.org/10.1785/0120150194.

Graizer, V., E. Kalkan, and K.-W. Lin. 2010. “Extending and Testing Graizer-Kalkan Ground Motion Attenuation Model Based on Atlas Database of Shallow Crustal Events.” In Proceedings of the Ninth U.S. National and 10th Canadian Conference on Earthquake Engineering: Reaching Beyond Borders.

———. 2013. “Global Ground Motion Prediction Equation for Shallow Crustal Regions.” Earthquake Spectra 29 (3): 777–91. https://doi.org/10.1193/1.4000140.

Gregor, N. J., and B. A. Bolt. 1997. “Peak Strong Motion Attenuation Relations for Horizontal and Vertical Ground Displacements.” Journal of Earthquake Engineering 1 (2): 275–92.

Gregor, N. J., W. J. Silva, I. G. Wong, and R. R. Youngs. 2002. “Ground-Motion Attenuation Relationships for Cascadia Subduction Zone Megathrust Earthquakes Based on a Stochastic Finite-Fault Model.” Bulletin of the Seismological Society of America 92 (5): 1923–32.

Gregor, N., W. Silva, and B. Darragh. 2002. “Development of Attenuation Relations for Peak Particle Velocity and Displacement.” A PEARL report to PG&E/CEC/Caltrans. Pacific Engineering; Analysis, El Cerrito, U.S.A. http://www.pacificengineering.org/rpts\_page1.shtml.

Gupta, A., J. W. Baker, and W. L. Ellsworth. 2017. “Assessing Ground-Motion Amplitudes and Attenuation for Small-to-Moderate Induced and Tectonic Earthquakes in the Central and Eastern United States.” Seismological Research Letters 88 (5): 1379–89. https://doi.org/10.1785/0220160199.

Gupta, I. D. 2010. “Response Spectral Attenuation Relations for in-Slab Earthquakes in Indo-Burmese Subduction Zone.” Soil Dynamics and Earthquake Engineering 30 (5): 368–77. https://doi.org/10.1016/j.soildyn.2009.12.009.

Gupta, I. D., and M. D. Trifunac. 2017. “Scaling of Fourier Spectra of Strong Earthquake Ground Motion in Western Himalaya and Northeastern India.” Soil Dynamics and Earthquake Engineering 102: 137–59. https://doi.org/10.1016/j.soildyn.2017.08.010.

———. 2018a. “Attenuation of Strong Earthquake Ground Motion –– I: Dependence on Geology Along the Wave Path from the Hindu Kush Subduction Zone to Western Himalaya.” Soil Dynamics and Earthquake Engineering 114: 127–46. https://doi.org/10.1016/j.soildyn.2018.05.008.

———. 2018b. “Attenuation of Strong Earthquake Ground Motion –– II: Dependence on Geology Along the Wave Paths from the Burmese Subduction Zone to Northeastern India.” Soil Dynamics and Earthquake Engineering 112: 256–76. https://doi.org/10.1016/j.soildyn.2018.05.009.

———. 2018c. “Empirical Scaling Relations for Pseudo Relative Velocity Spectra in Western Himalaya and Northeastern India.” Soil Dynamics and Earthquake Engineering 106: 70–89. https://doi.org/10.1016/j.soildyn.2017.12.005.

———. 2019. “Attenuation of Fourier Amplitude and Pseudo Relative Velocity Spectra Due to Local Earthquakes in the National Capital Region of India.” Soil Dynamics and Earthquake Engineering 116: 593–611. https://doi.org/10.1016/j.soildyn.2018.10.004.

Gupta, S., and I. D. Gupta. 2004. “The Prediction of Earthquake Peak Ground Acceleration in Koyna Region, India.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Gusev, A. A., E. I. Gordeev, E. M. Guseva, A. G. Petukhin, and V. N. Chebrov. 1997. “The First Version of the \({A}_{max} (M_w,R)\) Relationship for Kamchatka.” Pure and Applied Geophysics 149 (2): 299–312.

Gülerce, Z., and N. A. Abrahamson. 2011. “Site-Specific Design Spectra for Vertical Ground Motion.” Earthquake Spectra 27 (4): 1023–47. https://doi.org/10.1193/1.3651317.

Gülerce, Z., R. Kamai, N. A. Abrahamson, and W. J. Silva. 2017. “Ground Motion Prediction Equations for the Vertical Ground Motion Component Based on the NGA-W2 Database.” Earthquake Spectra 33 (2): 499–528. https://doi.org/10.1193/121814EQS213M.

Gülerce, Z., B. Kargıoğlu, and N. A. Abrahamson. 2016. “Turkey-Adjusted NGA-W1 Horizontal Ground Motion Prediction Models.” Earthquake Spectra 32 (1): 75–100. https://doi.org/10.1193/022714EQS034M.

Gülkan, P., and E. Kalkan. 2002. “Attenuation Modeling of Recent Earthquakes in Turkey.” Journal of Seismology 6 (3): 397–409.

Güllü, H., A. M. Ansal, and A. Özbay. 2008. “Seismic Hazard Studies for Gaziantep City in South Anatolia of Turkey.” Natural Hazards 44: 19–50. https://doi.org/10.1007/s11069-007-9140-3.

Güllü, H., and E. Erçelebi. 2007. “A Neural Network Approach for Attenuation Relationships: An Application Using Strong Ground Motion Data from Turkey.” Engineering Geology 93 (3–4): 65–81.

Günaydın, K., and A. Günaydın. 2008. “Peak Ground Acceleration Prediction by Artifical Neural Networks for Northwestern Turkey.” Mathematical Problems in Engineering. https://doi.org/10.1155/2008/919420.

Gürpinar, A. 1977. “A Stable Attenuation Law Based on RMS of Strong Motion Acceleration.” In Proceedings of the Symposium of the Analysis of Seismicity and on Seismic Risk.

Haendel, A., S. Specht, N. M. Kuehn, and F. Scherbaum. 2015. “Mixtures of Ground-Motion Prediction Equations as Backbone Models for a Logic Tree: An Application to the Subduction Zone in Northern Chile.” Bulletin of Earthquake Engineering 13 (2): 483–501. https://doi.org/10.1007/s10518-014-9636-7.

Haji-Soltani, A., S. Pezeshk, M. Malekmohammadi, and A. Zandieh. 2017. “A Study of Vertical-to-Horizontal Ratio of Earthquake Components in the Gulf Coast Region.” Bulletin of the Seismological Society of America 107 (5): 2055–66. https://doi.org/10.1785/0120160252.

Halldorsson, B., and A. S. Papageorgiou. 2005. “Calibration of the Specific Barrier Model to Earthquakes of Different Tectonic Regions.” Bulletin of the Seismological Society of America 95 (4): 1276–1300. https://doi.org/10.1785/0120040157.

Halldórsson, P., and B. I. Sveinsson. 2003. “Dvı́nun Hröunar á íslandi.” 03025. Veurstofa Íslands (Icelandic Meteorological Office).

Hamzehloo, H., and H. R. Bahoosh. 2010. “Theoretical Spectral Attenuation Relationship for Tehran Region, Iran.” In Proceedings of Fourteenth European Conference on Earthquake Engineering.

Hamzehloo, H., and M. Mahood. 2012. “Ground-Motion Attenuation Relationship for East Central Iran.” Bulletin of the Seismological Society of America 102 (6): 2677–84. https://doi.org/10.1785/0120110249.

Hamze-Ziabari, S. M., and T. Bakhshpoori. 2018. “Improving the Prediction of Ground Motion Parameters Based on an Efficient Bagging Ensemble Model of M5 and CART Algorithms.” Applied Soft Computing 68: 147–61. https://doi.org/10.1016/j.asoc.2018.03.052.

Hancock, J. 2006. “The Influence of Duration and the Selection and Scaling of Accelerograms in Engineering Design and Assessment.” PhD thesis, Imperial College London, United Kingdom.

Hancock, J., and J. J. Bommer. 2005. “The Effective Number of Cycles of Earthquake Ground Motion.” Earthquake Engineering and Structural Dynamics 34: 637–64. https://doi.org/10.1002/eqe.437.

Hancock, J., J. J. Bommer, and P. J. Stafford. 2008. “Numbers of Scaled and Matched Accelerograms Required for Inelastic Dynamic Analyses.” Earthquake Engineering and Structural Dynamics 37 (14): 1585–1607. https://doi.org/10.1002/eqe.827.

Hao, H., and B. A. Gaull. 2009. “Estimation of Strong Seismic Ground Motion for Engineering Use in Perth Western Australia.” Soil Dynamics and Earthquake Engineering 29 (5): 909–24. https://doi.org/10.1016/j.soildyn.2008.10.006.

Harbindu, A., S. Gupta, and M. L. Sharma. 2014. “Earthquake Ground Motion Predictive Equations for Garhwal Himalaya, India.” Soil Dynamics and Earthquake Engineering 66 (November): 135–48. https://doi.org/10.1016/j.soildyn.2014.06.018.

Hasegawa, H. S., P. W. Basham, and M. J. Berry. 1981. “Attenuation Relations for Strong Seismic Ground Motion in Canada.” Bulletin of the Seismological Society of America 71 (6): 1943–62.

Hassani, B., and G. M. Atkinson. 2015. “Referenced Empirical Ground-Motion Model for Eastern North America.” Seismological Research Letters 86 (2A): 477–91. https://doi.org/10.1785/0220140156.

———. 2018. “Adjustable Generic Ground-Motion Prediction Equation Based on Equivalent Point-Source Simulations: Accounting for Kappa Effects.” Bulletin of the Seismological Society of America 108 (2): 913–28. https://doi.org/10.1785/0120170333.

Hassani, N., G. G. Amiri, M. Bararnia, and F. Sinaeian. 2017. “Ground Motion Prediction Equation for Inelastic Spectral Displacement in Iran.” Scientia Iranica — Transactions B: Mechanical Engineering 24 (1): 164–82.

Hayes, G. P., D. J. Wald, and R. L. Johnson. 2012. “Slab1.0: A Three-Dimensional Model of Global Subduction Zone Geometries.” Journal of Geophysical Research 117 (B01302). https://doi.org/10.1029/2011JB008524.

Hays, W. W. 1980. “Procedures for Estimating Earthquake Ground Motions.” Geological Survey Professional Paper 1114. US Geological Survey.

Herak, M., S. Markus̆ić, and I. Ivančić. 2001. “Attenuation of Peak Horizontal and Vertical Acceleration in the Dinarides Area.” Studia Geophysica et Geodaetica 45 (4): 383–94.

Hermkes, M., N. M. Kuehn, and C. Riggelsen. 2014. “Simulataneous Quantification of Epistemic and Aleatory Uncertainty in GMPEs Using Gaussian Process Regression.” Bulletin of Earthquake Engineering 12 (1): 449–66. https://doi.org/10.1007/s10518-013-9507-7.

Hernandez, B., and F. Cotton. 2000. “Empirical Determination of the Ground Shaking Duration Due to an Earthquake Using Strong Motion Accelerograms for Engineering Applications.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Hernandez, B., Y. Fukushima, R. Bossu, and J. Albaric. 2006. “Seismic Attenuation Relation for Hualien (Taiwan) at the Free Surface and down to \(52.6\m\) Deep.” In Proceedings of Third International Symposium on the Effects of Surface Geology on Seismic Motion, 1:145–54.

Herrmann, R. B., and M. J. Goertz. 1981. “A Numerical Study of Peak Ground Motion Scaling.” Bulletin of the Seismological Society of America 71 (6): 1963–79.

Herrmann, R. B., and O. W. Nuttli. 1984. “Scaling and Attenuation Relations for Strong Ground Motion in Eastern North America.” In Proceedings of Eighth World Conference on Earthquake Engineering, II:305–9.

Hiehata, S., M. Takemura, and T. Ohta. 1988. “Regression Analysis on Fourier Amplitude Spectra of Seismic Ground Motions in Terms of Earthquake Magnitude, Hypocentral Distance and Site Condition.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:319–24.

Hinzen, K.-G., and M. Oemisch. 2001. “Location and Magnitude from Seismic Intensity Data of Recent and Historic Earthquakes in the Northern Rhine Area, Central Europe.” Bulletin of the Seismological Society of America 91 (1): 40–56. https://doi.org/10.1785/0120000036.

Hong, H. P., and K. Goda. 2007. “Orientation-Dependent Ground-Motion Measure for Seismic-Hazard Assessment.” Bulletin of the Seismological Society of America 97 (5): 1525–38. https://doi.org/10.1785/0120060194.

———. 2010. “Characteristics of Horizontal Ground Motion Measures Along Principal Directions.” Earthquake Engineering and Engineering Vibration 9 (1): 9–22. https://doi.org/10.1007/s11803-010-9048-x.

Hong, H. P., A. Pozos-Estrada, and R. Gomez. 2009. “Orientation Effect on Ground Motion Measurements for Mexican Subduction Earthquakes.” Earthquake Engineering and Engineering Vibration 8 (1): 1–16. https://doi.org/10.1007/s11803-009-8155-z.

Hong, H. P., Y. Zhang, and K. Goda. 2009. “Effect of Spatial Correlation on Estimated Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 99 (2A): 928–34. https://doi.org/10.1785/0120080172.

Horike, M., and T. Nishimura. 2004. “Attenuation Relationships of Peak Ground Velocity Inferred from the Kyoshin Network Data.” Journal of Structural and Construction Engineering (Transactions of AIJ) 575: 73–79.

Hu, J., J. Tan, and J. X. Zhao. 2020. “New Gmpes for the Sagami Bay Region in Japan for Moderate Magnitude Events with Emphasis on Differences on Site Amplifications at the Seafloor and Land Seismic Stations of K-NET.” Bulletin of the Seismological Society of America 110 (5): 2577–97. https://doi.org/10.1785/0120190305.

Huang, C., and C. Galasso. 2019. “Ground‐motion Intensity Measure Correlations Observed in Italian Strong‐motion Records.” Earthquake Engineering and Structural Dynamics 48: 1634–60. https://doi.org/10.1002/eqe.3216.

Huang, C., K. Tarbali, and C. Galasso. 2020. “Correlation Properties of Integral Ground-Motion Intensity Measures from Italian Strong-Motion Records.” Earthquake Engineering and Structural Dynamics 49 (15). https://doi.org/10.1002/eqe.3318.

———. 2021. “A Region-Specific Ground-Motion Model for Inelastic Spectral Displacement in Northern Italy Considering Spatial Correlation Properties.” Seismological Research Letters 92 (3): 1979–91. https://doi.org/10.1785/0220200249.

Huang, H., R. Ramkrishnan, S. Kolathayar, A. Garg, and J. S. Yadav. 2021. “Development of Region-Specific New Generation Attenuation Relations for North India Using Artificial Neural Networks.” In Proceedings of the 1st Indo-China Research Series in Geotechnical and Geoenvironmental Engineering, 85–101. Springer. https://doi.org/10.1007/978-981-33-4324-5_6.

Humbert, N., and E. Viallet. 2008. “An Evaluation of Epistemic and Random Uncertainties Included in Attenuation Relationship Parameters.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Hung, T. V., and O. Kiyomiya. 2012. “Ground Motion Attenuation Relationship for Shallow Strike-Slip Earthquakes in Northern Vietnam Based on Strong Motion Records from Japan, Vietnam and Adjacent Regions.” Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering) 68 (3): 509–25.

Huo, J., and Y. Hu. 1991. “Attenuation Laws Considering the Randomness of Magnitude and Distance.” Earthquake Research in China 5 (1): 17–36.

———. 1992. “Study on Attenuation Laws of Ground Motion Parameters.” Earthquake Engineering and Engineering Vibration 12: 1–11.

Huo, J., Y. Hu, and Q. Feng. 1992. “Study on Estimation of Ground Motion from Seismic Intensity.” Earthquake Engineering and Engineering Vibration 12 (3): 1–15.

Huo, J. R. 1989. “The Characteristics of Near Field Strong Earthquake Ground Motion.” PhD thesis, Institute of Engineering; Mechanics, China Seismological Bureau, China.

Hwang, H. 2006. “Attenuation of Arias Intensity Based on Data from the Chi-Chi Earthquake.” In Proceedings of the Eighth U.S. National Conference on Earthquake Engineering.

Hwang, H., and J.-R. Huo. 1997. “Attenuation Relations of Ground Motion for Rock and Soil Sites in Eastern United States.” Soil Dynamics and Earthquake Engineering 16 (6): 363–72.

Hwang, H., C. K. Lin, Y. T. Yeh, S. N. Cheng, and K. C. Chen. 2004. “Attenuation Relations of Arias Intensity Based on the Chi-Chi Taiwan Earthquake Data.” Soil Dynamics and Earthquake Engineering 24: 509–17.

Ibrahim, R., H. Si, K. Koketsu, and H. Miyake. 2016. “Long-Period Ground-Motion Prediction Equations for Moment Magnitude Estimation of Large Earthquakes in Japan.” Bulletin of the Seismological Society of America 106 (1): 54–72. https://doi.org/10.1785/0120140244.

Idini, B., F. Rojas, S. Ruiz, and C. Pastén. 2017. “Ground Motion Prediction Equations for the Chilean Subduction Zone.” Bulletin of Earthquake Engineering 15 (5): 1853–80. https://doi.org/10.1007/s10518-016-0050-1.

Idriss, I. M. 1993. “Procedures for Selecting Earthquake Ground Motions at Rock Sites.” NIST GCR 93-625. National Institute of Standards; Technology.

———. 2008. “An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes.” Earthquake Spectra 24 (1): 217–42. https://doi.org/10.1193/1.2924362.

———. 2013. “NGA-West2 Model for Estimating Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes.” 2013/08. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.

———. 1978. “Characteristics of Earthquake Ground Motions.” In Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference: Earthquake Engineering and Soil Dynamics, III:1151–1265.

———. 2014. “An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes.” Earthquake Spectra 30 (3): 1155–77. https://doi.org/10.1193/070613EQS195M.

Iervolino, I., M. Giorgio, C. Galasso, and G. Manfredi. 2010. “Conditional Hazard Maps for Secondary Intensity Measures.” Bulletin of the Seismological Society of America 100 (6): 3312–9. https://doi.org/10.1785/0120090383.

Iglesias, A., S. K. Singh, J. F. Pacheco, and M. Ordaz. 2002. “A Source and Wave Propagation Study of the Copalillo, Mexico, Earthquake of 21 July 2000 (\({M}_w 5.9\)): Implications for Seismic Hazard in Mexico City from Inslab Earthquakes.” Bulletin of the Seismological Society of America 92 (3): 1060–71. https://doi.org/10.1785/0120010144.

Inan, E., Z. Colakoglu, N. Koc, N. Bayülke, and E. Coruh. 1996. “Earthquake Catalogs with Acceleration Records from 1976 to 1996.” General Directorate of Disaster Affairs, Earthquake Research Department, Ankara, Turkey.

Iwasaki, T., K. Kawashima, and M. Saeki. 1980. “Effects of Seismic and Geotechnical Conditions on Maximum Ground Accelerations and Response Spectra.” In Proceedings of Seventh World Conference on Earthquake Engineering, 2:183–90.

Iyengar, R. N., and S. Ghosh. 2004. “Microzonation of Earthquake Hazard in Greater Delhi Area.” Current Science 87 (9): 1193–1202.

Iyengar, R. N., and S. T. G. Raghu Kanth. 2004. “Attenuation of Strong Ground Motion in Peninsular India.” Seismological Research Letters 75 (4): 530–40. https://doi.org/10.1785/gssrl.75.4.530.

Jacob, K. H., J.-C. Gariel, J. Armbruster, S. Hough, P. Friberg, and M. Tuttle. 1990. “Site-Specific Ground Motion Estimates for New York City.” In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, 1:587–96.

Jaimes, M. A., and A. D. Garcı́a-Soto. 2020. “Updated Ground Motion Prediction Model for Mexican Intermediate-Depth Intraslab Earthquakes Including V/H Ratios.” Earthquake Spectra 36 (3): 1298–1330. https://doi.org/10.1177/8755293019899947.

Jaimes, M. A., and A.-D. Garcı́a-Soto. 2021. “Ground-Motion Duration Prediction Model from Recorded Mexican Interplate and Intermediate-Depth Intraslab Earthquakes.” Bulletin of the Seismological Society of America 111 (1): 258–73. https://doi.org/10.1785/0120200196.

Jaimes, M. A., A. Ramirez-Gaytán, and E. Reinoso. 2015. “Ground-Motion Prediction Model from Intermediate-Depth Intraslab Earthquakes at the Hill and Lake-Bed Zones of Mexico City.” Journal of Earthquake Engineering 19 (8): 1260–78. https://doi.org/10.1080/13632469.2015.1025926.

Jaimes, M. A., E. Reinoso, and M. Ordaz. 2006. “Comparison of Methods to Predict Response Spectra at Instrumented Sites Given the Magnitude and Distance of an Earthquake.” Journal of Earthquake Engineering 10 (6): 887–902. https://doi.org/10.1080/13632460609350622.

Jain, S. K., A. D. Roshan, J. N. Arlekar, and P. C. Basu. 2000. “Empirical Attenuation Relationships for the Himalayan Earthquakes Based on Indian Strong Motion Data.” In Proceedings of the Sixth International Conference on Seismic Zonation.

Javan-Emrooz, H., M. Eskandari-Ghadi, and N. Mirzaei. 2018. “Prediction Equations for Horizontal and Vertical PGA, PGV, and PGD in Northern Iran Using Prefix Gene Expression Programming.” Bulletin of the Seismological Society of America 108 (4): 2305–32. https://doi.org/10.1785/0120170155.

Jayaram, N., and J. W. Baker. 2010. “Considering Spatial Correlation in Mixed-Effects Regression and the Impact on Ground-Motion Models.” Bulletin of the Seismological Society of America 100 (6): 3295–3303. https://doi.org/10.1785/0120090366.

Jean, W.-Y., Y.-W. Chang, K.-L. Wen, and C.-H. Loh. 2006. “Early Estimation of Seismic Hazard for Strong Earthquakes in Taiwan.” Natural Hazards 37: 39–53. https://doi.org/10.1007/s11069-005-4655-y.

Jee, H. W., and S. W. Han. 2021. “Regional Ground Motion Prediction Equation Developed for the Korean Peninsula Using Recorded and Simulated Ground Motions.” Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2021.1871682.

Jeon, Y.-S., and R. B. Herrmann. 2004. “High-Frequency Earthquake Ground-Motion Scaling in Utah and Yellowstone.” Bulletin of the Seismological Society of America 94 (5): 1644–57.

Jeong, G. H., and H. S. Lee. 2017. “An Earthquake Ground Motion Model (GMM) for Korean Peninsula.” In The 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM17).

Jeong, K.-H., and H.-S. Lee. 2018. “Ground-Motion Prediction Equation for South Korea Based on Recent Earthquake Records.” Earthquakes and Structures 15 (1): 29–44. https://doi.org/10.12989/eas.2018.15.1.029.

Ji, D., C. Li, C. Zhai, Y. Dong, E. I. Katsanos, and W. Wang. 2021. “Prediction of Ground-Motion Parameters for the NGA-West2 Database Using Refined Second-Order Deep Neural Networks.” Bulletin of the Seismological Society of America 111 (6): 3278–96. https://doi.org/10.1785/0120200388.

Jibson, R. W. 1987. “Summary of Research on the Effects of Topographic Amplification of Earthquakes Shaking on Slope Stability.” Open-File Report 87-268. Menlo Park, California, USA: US Geological Survey.

Jiménez, M.-J., M. Garcı́a-Fernández, and the GSHAP Ibero-Maghreb Working Group. 1999. “Seismic Hazard Assessment in the Ibero-Maghreb Region.” Annali Di Geofisica 42 (6): 1057–65.

Jin, X., L.-C. Kang, and Y.-P. Ou. 2008. “Ground Motion Attenuation Relation for Small to Moderate Earthquakes in Fujian Region, China.” Acta Seismologica Sinica 21 (3): 283–95. https://doi.org/10.1007/s11589-008-0283-4.

Johnson, R. A. 1973. “An Earthquake Spectrum Prediction Technique.” Bulletin of the Seismological Society of America 63 (4): 1255–74.

Johnston, A., and others. 1994. “The Earthquakes of Stable Continental Regions, Vol. 1: Assessment of Large Earthquake Potential.” EPRI Report TR-102261. Electrical Power Research Institute, Palo Alto.

Jonathan, E. 1996. “Some Aspects of Seismicity in Zimbabwe and Eastern and Southern Africa.” Master’s thesis, Institute of Solid Earth Physics, University of Bergen, Norway.

Joshi, A., A. Kumar, H. Castanos, and C. Lomnitz. 2013. “Seismic Hazard of the Uttarakhand Himalaya, India, from Deterministic Modeling of Possible Rupture Planes in the Area.” International Journal of Geophysics. https://doi.org/10.1155/2013/825276.

Joshi, A., A. Kumar, C. Lomnitz, H. Castanños, and S. Akhtar. 2012. “Applicability of Attenuation Relations for Regional Studies.” Geofı́sica Internacional 51 (4): 349–63.

Joshi, A., A. Kumar, K. Mohran, and B. K. Rastogi. 2013. “Hybrid Attenuation Model for Estimation of Peak Ground Accelerations in the Kutch Region, India.” Natural Hazards 68 (2): 249–69. https://doi.org/10.1007/s11069-012-0524-7.

Joshi, A., A. Kumar, and A. Sinvhal. 2011. “Attenuation Relation for the Kumaon and Garhwal Himalaya, Uttarakhand, India.” In Proceeding of International Symposium on the 2001 Bhuj Earthquake and Advances in Earthquake Sciences — AES 2011. ISR, Gandhinagar, Gujart, India.

Joyner, W. B., and D. M. Boore. 1982a. “Estimation of Response-Spectral Values as Functions of Magnitude, Distance, and Site Conditions.” Open-File Report 82-881. U.S. Geological Survey.

———. 1982b. “Prediction of Earthquake Response Spectra.” Open-File Report 82-977. U.S. Geological Survey.

———. 1981. “Peak Horizontal Acceleration and Velocity from Strong-Motion Records Including Records from the 1979 Imperial Valley, California, Earthquake.” Bulletin of the Seismological Society of America 71 (6): 2011–38.

———. 1988. “Measurement, Characterization, and Prediction of Strong Ground Motion.” In Proceedings of Earthquake Engineering & Soil Dynamics II, 43–102. Geotechnical Division, ASCE.

———. 1993. “Methods for Regression Analysis of Strong-Motion Data.” Bulletin of the Seismological Society of America 83 (2): 469–87.

———. 1996. “Recent Developments in Strong Motion Attenuation Relationships.” In Proceedings of the 28th Joint Meeting of the U.S.-Japan Cooperative Program in Natural Resource Panel on Wind and Seismic Effects, 101–16.

Joyner, W. B., and T. E. Fumal. 1984. “Use of Measured Shear-Wave Velocity for Predicting Geologic Site Effects on Strong Ground Motion.” In Proceedings of Eighth World Conference on Earthquake Engineering, II:777–83.

———. 1985. “Predictive Mapping of Earthquake Ground Motion.” In Evaluating Earthquake Hazards in the Los Angeles Region — An Earth Science Perspective, 203–20. U.S. Geological Survey Professional Paper 1360. Washington: United States Government Printing Office.

Junn, J.-G., N.-D. Jo, and C.-E. Baag. 2002. “Stochastic Prediction of Ground Motions in Southern Korea.” Geosciences Journal 6 (3): 203–14.

Kale, Ö, S. Akkar, A. Ansari, and H. Hamzehloo. 2015. “A Ground-Motion Predictive Model for Iran and Turkey for Horizontal PGA, PGV, and 5% Damped Response Spectrum: Investigation of Possible Regional Effects.” Bulletin of the Seismological Society of America 105 (2A): 963–80. https://doi.org/10.1785/0120140134.

Kalkan, E., and P. Gülkan. 2004a. “Empirical Attenuation Equations for Vertical Ground Motion in Turkey.” Earthquake Spectra 20 (3): 853–82.

———. 2004b. “Site-Dependent Spectra Derived from Ground Motion Records in Turkey.” Earthquake Spectra 20 (4): 1111–38.

———. 2005. “Erratum: Site-Dependent Spectra Derived from Ground Motion Records in Turkey.” Earthquake Spectra 21 (1): 283.

Kamai, R., N. A. Abrahamson, and W. J. Silva. 2014. “Nonlinear Horizontal Site Amplification for Constraining the NGA-West2 GMPEs.” Earthquake Spectra 30 (3): 1223–40. https://doi.org/10.1193/070113EQS187M.

Kamiyama, M. 1984. “Effects of Subsoil Conditions and Other Factors on the Duration of Earthquake Ground Shakings.” In Proceedings of Eighth World Conference on Earthquake Engineering, II:793–800.

———. 1995. “An Attenuation Model for the Peak Values of Strong Ground Motions with Emphasis on Local Soil Effects.” In Proceedings of the First International Conference on Earthquake Geotechnical Engineering, 1:579–85.

———. 1989. “Regression Analyses of Strong-Motion Spectra in Terms of a Simplified Faulting Source Model.” In Proceedings of the Fourth International Conference on Soil Dynamics and Earthquake Engineering, 113–26.

Kamiyama, M., M. J. O’Rourke, and R. Flores-Berrones. 1992. “A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and Local Site Conditions.” NCEER-92-0023. National Center for Earthquake Engineering Research.

Kamiyama, M., and E. Yanagisawa. 1986. “A Statisical Model for Estimating Response Spectra of Strong Earthquake Ground Motions with Emphasis on Local Soil Conditions.” Soils and Foundations 26 (2): 16–32.

Kanai, K. 1966. “Improved Empirical Formula for Characteristics of Stray [Sic] Earthquake Motions.” In Proceedings of the Japanese Earthquake Symposium, 1–4.

Kang, L., and X. Jin. 2009. “Ground Motion Attenuation Relations of Small and Moderate Earthquakes in Sichuan Region.” Earthquake Science 22: 277–82. https://doi.org/10.1007/s11589-009-0277-x.

Kanno, T., A. Narita, N. Morikawa, H. Fujiwara, and Y. Fukushima. 2006. “A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data.” Bulletin of the Seismological Society of America 96 (3): 879–97. https://doi.org/10.1785/0120050138.

Kashani, A. R., M. Akhani, C. V. Camp, and A. H. Gandomi. 2021. “A Neural Network to Predict Spectral Acceleration.” In Basics of Computational Geophysics, 335–49. https://doi.org/10.1016/B978-0-12-820513-6.00006-0.

Kaski, K. M. 2017. “A Comparison of Ground Motion Characteristics from Induced Seismic Events in Alberta with Those in Oklahoma.” Master’s thesis, The University of Western Ontario, Canada.

Kaski, K. M., and G. M. Atkinson. 2017. “A Comparison of Ground‐Motion Characteristics from Induced Seismic Events in Alberta with Those in Oklahoma.” Seismological Research Letters 88 (6): 1570–85. https://doi.org/10.1785/0220170064.

Kataoka, S., S. Matsumoto, T. Kusakabe, and N. Toyama. 2008. “Attenuation Relationships and Amplification Map for Ground Motion in Rather-Long Period Range.” Doboku Gakkai Ronbunshuu A 64 (4): 721–38. https://doi.org/10.2208/jsceja.64.721.

Kataoka, S., T. Satoh, S. Matsumoto, and T. Kusakabe. 2006. “Attenuation Relationships of Ground Motion Intensity Using Short Period Level as a Variable.” Doboku Gakkai Ronbunshuu A 62 (4): 740–57. https://doi.org/10.2208/jsceja.62.740.

Katayama, T. 1974. “Statistical Analysis of Peak Acceleration of Recorded Earthquake Ground Motions.” Seisan-Kenkyu 26 (1): 18–20.

———. 1982. “An Engineering Prediction Model of Acceleration Response Spectra and Its Application to Seismic Hazard Mapping.” Earthquake Engineering and Structural Dynamics 10 (1): 149–63. https://doi.org/10.1002/eqe.4290100111.

Kaveh, A., T. Bakhshpoori, and S. M. Hamzeh-Ziabari. 2016. “Derivation of New Equations for Prediction of Principal Ground-Motion Parameters Using M5’ Algorithm.” Journal of Earthquake Engineering 20 (6): 910–30. https://doi.org/10.1080/13632469.2015.1104758.

Kaveh, A., S. M. Hamze-Ziabari, and T. Bakhshpoori. 2018. “Feasibility of PSO-ANFIS-PSO and GA-ANFIS-GA Models in Prediction of Peak Ground Acceleration.” International Journal of Optimization in Civil Engineering 8 (1): 1–14.

Kawano, H., K. Takahashi, M. Takemura, M. Tohdo, T. Watanabe, and S. Noda. 2000. “Empirical Response Spectral Attenuations on the Rocks with \(\mathrm{VS}=0.5\) to \(3.0\,\mathrm{km/s}\) in Japan.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Kawashima, K., K. Aizawa, and K. Takahashi. 1984. “Attenuation of Peak Ground Motion and Absolute Acceleration Response Spectra.” In Proceedings of Eighth World Conference on Earthquake Engineering, II:257–64.

———. 1986. “Attenuation of Peak Ground Acceleration, Velocity and Displacement Based on Multiple Regression Analysis of Japanese Strong Motion Records.” Earthquake Engineering and Structural Dynamics 14 (2): 199–215.

———. 1985. “Attenuation of Peak Ground Motions and Absolute Acceleration Response Spectra of Vertical Earthquake Ground Motion.” Proceedings of JSCE Structural Engineering/Earthquake Engineering 2 (2): 415–22.

Kayabali, K., and T. Beyaz. 2011. “Strong Motion Attenuation Relationship for Turkey —– a Different Perspective.” Bulletin of Engineering Geology and the Environment 70: 467–81. https://doi.org/10.1007/s10064-010-0335-6.

Kayen, R. E., and J. K. Mitchell. 1997. “Assessment of Liquefaction Potential During Earthquakes by Arias Intensity.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE 123 (12): 1162–75.

Kempton, J. J., and J. P. Stewart. 2006. “Prediction Equations for Significant Duration of Earthquake Ground Motions Considering Site and Near-Source Effects.” Earthquake Spectra 22 (4): 985–1013. https://doi.org/10.1193/1.2358175.

Khademi, M. H. 2002. “Attenuation of Peak and Spectral Accelerations in the Persian Plateau.” In Proceedings of Twelfth European Conference on Earthquake Engineering.

Khosravikia, F., and P. Clayton. 2021. “Machine Learning in Ground Motion Prediction.” Computers and Geosciences 148 (104700). https://doi.org/10.1016/j.cageo.2021.104700.

Khosravikia, F., Y. Zeinali, Z. Nagy, P. Clayton, and E. M. Rathje. 2018. “Neural Network-Based Equations for Predicting PGA and PGV in Texas, Oklahoma, and Kansas.” In Geotechnical Earthquake Engineering and Soil Dynamics V Gsp 291, 538–49.

Kim, B., and M. Shin. 2017. “A Model for Estimating Horizontal Aftershock Ground Motions for Active Crustal Regions.” Soil Dynamics and Earthquake Engineering 92: 165–75. https://doi.org/10.1016/j.soildyn.2016.09.040.

Kiuchi, R., W. D. Mooney, and H. M. Zahran. 2019. “Ground-Motion Prediction Equations for Western Saudi Arabia.” Bulletin of the Seismological Society of America 109 (6): 2722–37. https://doi.org/10.1785/0120180302.

Kobayashi, H., and S. Midorikawa. 1982. “A Semi-Empirical Method for Estimating Response Spectra of Near-Field Ground Motions with Regard to Fault Rupture.” In Proceedings of Seventh European Conference on Earthquake Engineering, 2:161–68.

Kobayashi, H., and S. Nagahashi. 1977. “Response Spectra on Seismic Bedrock During Earthquake.” In Proceedings of Sixth World Conference on Earthquake Engineering, I:516–22.

Kobayashi, S., T. Takahashi, S. Matsuzaki, M. Mori, Y. Fukushima, J. X. Zhao, and P. G. Somerville. 2000. “A Spectral Attenuation Model for Japan Using Digital Strong Motion Records of JMA87 Type.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Konovalov, A. V., K. A. Manaychev, A. A. Stepnov, and A. V. Gavrilov. 2019. “Regional Ground Motion Prediction Equation for Sakhalin Island.” Seismic Instruments 55 (1): 70–77.

Kostov, M. K. 2005. “Site Specific Estimation of Cumulative Absolute Velocity.” In 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18).

Kotha, S. R., D. Bindi, and F. Cotton. 2016a. “Partially Non-Ergodic Region Specific GMPE for Europe and Middle-East.” Bulletin of Earthquake Engineering 14 (4): 1245–63. https://doi.org/10.1007/s10518-016-9875-x.

———. 2016b. “Erratum to: Partially Non-Ergodic Region Specific GMPE for Europe and Middle-East.” Bulletin of Earthquake Engineering 14 (8): 2435–5. https://doi.org/10.1007/s10518-016-9940-5.

Kotha, S. R., F. Cotton, and D. Bindi. 2018a. “A New Approach to Site Classification: Mixed-Effects Ground Motion Prediction Equation with Spectral Clustering of Site Amplification Functions.” Soil Dynamics and Earthquake Engineering 110: 318–29. https://doi.org/10.1016/j.soildyn.2018.01.051.

———. 2018b. “Site Classification Derived from Spectral Clustering of Empirical Site Amplification Functions.” In Proceedings of Sixteenth European Conference on Earthquake Engineering.

Kotha, S. R., G. Weatherill, D. Bindi, and F. Cotton. 2020. “A Regionally-Adaptable Ground-Motion Model for Shallow Crustal Earthquakes in Europe.” Bulletin of Earthquake Engineering 18: 4091–4125. https://doi.org/10.1007/s10518-020-00869-1.

Kowsari, M., S. Ghasemi, Z. Farajpour, and M. Zare. 2019. “Capturing Epistemic Uncertainty in the Iranian Strong-Motion Data on the Basis of Backbone Ground Motion Models.” Journal of Seismology. https://doi.org/10.1007/s10950-019-09886-3.

Kowsari, M., T. Sonnemann, B. Halldorsson, B. Hrafnkelsson, J. Th. Snæbjörnsson, and S. Jónsson. 2020. “Bayesian Inference of Empirical Ground Motion Models to Pseudo-Spectral Accelerations of South Iceland Seismic Zone Earthquakes Based on Informative Priors.” Soil Dynamics and Earthquake Engineering 132 (106075). https://doi.org/10.1016/j.soildyn.2020.106075.

Krinitzsky, E. L., F. K. Chang, and O. W. Nuttli. 1988. “Magnitude-Related Earthquake Ground Motions.” Bulletin of the Association of Engineering Geologists XXV (4): 399–423.

———. 1987. “State-of-the-Art for Assessing Earthquake Hazards in the United States; Report 26, Parameters for Specifying Magnitude-Related Earthquake Ground Motions.” U.S. Army Engineer Waterways Experimental Station.

Ktenidou, O.-J., Z. Roumelioti, N. Abrahamson, F. Cotton, K. Pitilakis, and F. Hollender. 2018. “Understanding Single-Station Ground Motion Variability and Uncertainty (Sigma): Lessons Learnt from EUROSEISTEST.” Bulletin of Earthquake Engineering 16: 2311–36. https://doi.org/10.1007/s10518-017-0098-6.

Kuehn, N. M., T. Kishida, M. AlHamaydeh, G. Lavrentiadis, and Y. Bozorgnia. 2020. “A Bayesian Model for Truncated Regression for the Estimation of Empirical Ground-Motion Models.” Bulletin of Earthquake Engineering 18: 6149–79. https://doi.org/10.1007/s10518-020-00943-8.

Kuehn, N. M., C. Riggelsen, and F. Scherbaum. 2011. “Modeling the Joint Probability of Earthquake, Site, and Ground-Motion Parameters Using Bayesian Networks.” Bulletin of the Seismological Society of America 101 (1): 235–49. https://doi.org/10.1785/0120100080.

Kuehn, N. M., and F. Scherbaum. 2016. “A Partially Non-Ergodic Ground-Motion Prediction Equation for Europe and the Middle East.” Bulletin of Earthquake Engineering 14 (10): 2629–42. https://doi.org/10.1007/s10518-016-9911-x.

———. 2015. “Ground-Motion Prediction Model: A Multilevel Approach.” Bulletin of Earthquake Engineering 13 (9): 2481–91. https://doi.org/10.1007/s10518-015-9732-3.

Kuehn, N. M., F. Scherbaum, and C. Riggelsen. 2009. “Deriving Empirical Ground-Motion Models: Balancing Data Constraints and Physical Assumptions to Optimize Prediction Capability.” Bulletin of the Seismological Society of America 99 (4): 2335–47. https://doi.org/10.1785/0120080136.

Kumar, A., H. Mittal, R. Kumar, and R. S. Ahluwalia. 2017. “Empirical Attenuation Relationship for Peak Ground Horizontal Acceleration for North-East Himalaya.” Vietnam Journal of Earth Sciences 39 (1): 47–57. https://doi.org/10.15625/0866-7187/39/1/9183.

Kumar, P., B. P. Chamoli, A. Kumar, and A. Gairola. 2021. “Attenuation Relationship for Peak Horizontal Acceleration of Strong Ground Motion of Uttarakhand Region of Central Himalayas.” Journal of Earthquake Engineering 25 (12): 2537–54. https://doi.org/10.1080/13632469.2019.1634161.

Kurzon, I., F. L. Vernon, Y. Ben-Zion, and G. Atkinson. 2014. “Ground Motion Prediction Equations in the San Jacinto Fault Zone: Significant Effects of Rupture Directivity and Fault Zone Amplification.” Pure and Applied Geophysics 171 (11): 3045–81. https://doi.org/10.1007/s00024-014-0855-2.

Landwehr, N., N. M. Kuehn, T. Scheffer, and N. Abrahamson. 2016. “A Nonergodic Ground-Motion Model for California with Spatially Varying Coefficients.” Bulletin of the Seismological Society of America 106 (6): 2574–83. https://doi.org/10.1785/0120160118.

Lanzano, G., M. D’Amico, C. Felicetta, R. Puglia, L. Luzi, F. Pacor, and D. Bindi. 2016. “Ground-Motion Prediction Equations for Region-Specific Probabilistic Seismic-Hazard Analysis.” Bulletin of the Seismological Society of America 106 (1): 73–92. https://doi.org/10.1785/0120150096.

Lanzano, G., and L. Luzi. 2020. “A Ground Motion Model for Volcanic Areas in Italy.” Bulletin of Earthquake Engineering 18 (1): 57–76. https://doi.org/10.1007/s10518-019-00735-9.

Lanzano, G., L. Luzi, F. Pacor, C. Felicetta, R. Puglia, S. Sgobba, and M. D’Amico. 2019. “A Revised Ground-Motion Prediction Model for Shallow Crustal Earthquakes in Italy.” Bulletin of the Seismological Society of America 109 (2): 525–40. https://doi.org/10.1785/0120180210.

Lanzano, G., L. Luzi, F. Pacor, R. Puglia, C. Felicetta, M. D’Amico, and S. Sgobba. 2019. “Update of the Ground Motion Predictions for Italy.” In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions. Associazione Geotecnica Italiana.

Laouami, N. 2019. “Vertical Ground Motion Prediction Equations and Vertical-to-Horizontal (V/H) Ratios of PGA and PSA for Algeria and Surrounding Region.” Bulletin of Earthquake Engineering 17 (7): 3637–60. https://doi.org/10.1007/s10518-019-00635-y.

Laouami, N., and A. Slimani. 2012. “Local Vs. Regional Spectral Ground-Motion Predictive Equation for Algeria.” In Proceedings of Fifteenth World Conference on Earthquake Engineering.

Laouami, N., A. Slimani, Y. Bouhadad, J.-L. Chatelain, and A. Nour. 2006. “Evidence for Fault-Related Directionality and Localized Site Effects from Strong Motion Recordings of the 2003 Boumerdes (Algeria) Earthquake: Consequences on Damage Distribution and the Algerian Seismic Code.” Soil Dynamics and Earthquake Engineering 26 (11): 991–1003.

Laouami, N., A. Slimani, and S. Larbes. 2018a. “Correction to: Ground Motion Prediction Equations for Algeria and Surrounding Region Using Site Classification Based H/V Spectral Ratio.” Bulletin of Earthquake Engineering 16 (7): 2685–6. https://doi.org/10.1007/s10518-018-0335-7.

———. 2018b. “Ground Motion Prediction Equations for Algeria and Surrounding Region Using Site Classification Based H/V Spectral Ratio.” Bulletin of Earthquake Engineering 16 (7): 2653–84. https://doi.org/10.1007/s10518-018-0310-3.

Laurendeau, A., P.-Y. Bard, F. Hollender, V. Perron, L. Foundotos, O.-J. Ktenidou, and B. Hernandez. 2018. “Derivation of Consistent Hard Rock (\(1000<{V_S}<3000\ms\)) GMPEs from Surface and down-Hole Recordings: Analysis of KiK-Net Data.” Bulletin of Earthquake Engineering 16: 2253–84. https://doi.org/10.1007/s10518-017-0142-6.

Laurendeau, A., F. Cotton, O.-J. Ktenidou, L.-F. Bonilla, and F. Hollender. 2013. “Rock and Stiff-Soil Site Amplification: Dependency on \({V}_{S30}\) and Kappa (\(\kappa_0\)).” Bulletin of the Seismological Society of America 103 (6): 3131–48. https://doi.org/10.1785/0120130020.

Lavrentiadis, G., N. A. Abrahamson, and N. M. Kuehn. 2021. “A Non-Ergodic Effective Amplitude Ground-Motion Model for California.” Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-021-01206-w.

Lawson, R. S., and H. Krawinkler. 1994. “Cumulative Damage Potential of Seismic Ground Motion.” In Proceedings of Tenth European Conference on Earthquake Engineering, 2:1079–86.

Lee, C. T., C. T. Cheng, C. W. Liao, and Y. B. Tsai. 2001. “Site Classification of Taiwan Free-Field Strong-Motion Stations.” Bulletin of the Seismological Society of America 91: 1283–97.

Lee, C.-T., B.-S. Hsieh, C.-H. Sung, and P.-S. Lin. 2012. “Regional Arias Intensity Attenuation Relationship for Taiwan Considering \({V_{S30}}\).” Bulletin of the Seismological Society of America 102 (1): 129–42. https://doi.org/10.1785/0120100268.

Lee, J. 2009. “Engineering Charaterization of Earthquake Ground Motions.” PhD thesis, University of Michigan, USA.

Lee, J., and R. A. Green. 2008. “Predictive Relations for Significant Durations in Stable Continental Regions.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

———. 2014. “An Empirical Significant Duration Relationship for Stable Continental Regions.” Bulletin of Earthquake Engineering 12 (1). https://doi.org/10.1007/s10518-013-9570-0.

Lee, V. W. 1995. “Pseudo Relative Velocity Spectra in Former Yugoslavia.” European Earthquake Engineering IX (1): 12–22.

———. 1987. “Influence of Local Soil and Geological Site Conditions on Pseudo Relative Velocity Spectrum Amplitudes of Recorded Strong Motion Accelerations.” CE 87-06. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

———. 1993. “Scaling \(\mathrm{PSV}\) from Earthquake Magnitude, Local Soil, and Geologic Depth of Sediments.” Journal of the Geotechnical Engineering Division, ASCE 119 (1): 108–26.

Lee, V. W., and M. Manić. 1994. “Empirical Scaling of Response Spectra in Former Yugoslavia.” In Proceedings of Tenth European Conference on Earthquake Engineering, 4:2567–72.

Lee, V. W., and M. D. Trifunac. 1995. “Pseudo Relative Velocity Spectra of Strong Earthquake Ground Motion in California.” CE 95-04. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

Lee, V. W., M. D. Trifunac, B. Bulajić, and M. Manić. 2016a. “A Preliminary Empirical Model for Frequency-Dependent Attenuation of Fourier Amplitude Spectra in Serbia from the Vrancea Earthquakes.” Soil Dynamics and Earthquake Engineering 83 (April): 167–79. https://doi.org/10.1016/j.soildyn.2015.12.004.

Lee, V. W., M. D. Trifunac, B. . Bulajić, and M. I. Manić. 2016b. “Preliminary Empirical Scaling of Pseudo Relative Velocity Spectra in Serbia from the Vrancea Earthquakes.” Soil Dynamics and Earthquake Engineering 86: 41–54. https://doi.org/10.1016/j.soildyn.2016.03.007.

Lee, V. W., M. D. Trifunac, M. I. Todorovska, and E. I. Novikova. 1995. “Empirical Equations Describing Attenuation of Peak of Strong Ground Motion, in Terms of Magnitude, Distance, Path Effects and Site Conditions.” CE 95-02. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

Lee, Y., J. G. Anderson, and Y. Zeng. 2000. “Evaluation of Empirical Ground-Motion Relations in Southern California.” Bulletin of the Seismological Society of America 90 (6B): S136–S148.

Le Goff, B., J. F. Borges, and M. Bezzeghoud. 2014. “Intensity-Distance Attenuation Laws for the Portugal Mainland Using Intensity Data Points.” Geophysical Journal International 199 (2): 1278–85. https://doi.org/10.1093/gji/ggu317.

Leonard, M. 2015. “Consistent MMI Area Estimation for Australian Earthquakes.” In Proceedings of the Tenth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Pacific.

Li, S., and others. 2003. “Study on Attenuation Features of Earthquake Intensity in the Yunnan Region.” Earthquake Research in China 19 (3).

Li, X., G. Li, and C. Li. 2009. “Analysis of Ground Motion Parameters and Ground Liquefaction Prediction Using GIS for Kunming Basin, China.” In International Conference on Geo-Spatial Solutions for Emergency Management and the 50th Anniversary of the Chinese Academy of Surveying and Mapping, 78–83.

Li, X., C. Zhai, W. Wen, and L. Xie. 2020. “Ground Motion Prediction Model for Horizontal PGA, \(5\%\) Damped Response Spectrum in Sichuan-Yunnan Region of China.” Journal of Earthquake Engineering 24 (11): 1829–66. https://doi.org/10.1080/13632469.2018.1485600.

Liang, J., H. Hao, B. A. Gaull, and C. Sinadinovski. 2008. “Estimation of Strong Ground Motions in Southwest Western Australia with a Combined Green’s Function and Stochastic Approach.” Journal of Earthquake Engineering 12 (3): 382–405.

Liew, M. S., K. U. Danyaro, M. Mohamad, L. E. Shawn, and A. Aulov. 2017. “Ground Motion Prediction Equations for Malaysia Due to Subduction Zone Earthquakes in Sumatran Region.” IEEE Access 5: 23920–37. https://doi.org/10.1109/ACCESS.2017.2748360.

Lin, P.-S., B. Chiou, N. Abrahamson, M. Walling, C.-T. Lee, and C.-T. Cheng. 2011. “Repeatable Source, Site, and Path Effects on the Standard Deviation for Empirical Ground-Motion Prediction Models.” Bulletin of the Seismological Society of America 101 (5): 2281–95. https://doi.org/10.1785/0120090312.

Lin, P.-S., and C.-T. Lee. 2008. “Ground-Motion Attenuation Relationships for Subduction-Zone Earthquakes in Northeastern Taiwan.” Bulletin of the Seismological Society of America 98 (1): 220–40. https://doi.org/10.1785/0120060002.

Lin, P.-S., C.-T. Lee, C.-T. Cheng, and C.-H. Sung. 2011. “Response Spectral Attenuation Relations for Shallow Crustal Earthquakes in Taiwan.” Engineering Geology 121 (3–4): 150–64.

Lin, and Lee. 2004. “Unknown.” Original reference not seen. Cited in “Attenuation Relationship of Arias Intensity for Taiwan” by Hsieh, P.-S. (2007).

Liu, K.-S., and Y.-B. Tsai. 2005. “Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan.” Bulletin of the Seismological Society of America 95 (3): 1045–58. https://doi.org/10.1785/0120040162.

Loh, C.-H., Y. T. Yeh, W.-Y. Jean, and Y.-H. Yeh. 1991. “Probabilistic Seismic Risk Analysis in the Taiwan Area Based on PGA and Spectral Amplitude Attenuation Formulas.” Engineering Geology 30 (3–4): 277–304.

Lubkowski, Z., J. Bommer, B. Baptie, J. Bird, J. Douglas, M. Free, J. Hancock, S. Sargeant, N. Sartain, and F. Strasser. 2004. “An Evaluation of Attenuation Relationships for Seismic Hazard Assessment in the UK.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Lungu, D., O. Coman, and T. Moldoveanu. 1995. “Hazard Analysis for Vrancea Earthquakes. Application to Cernavoda NPP Site in Romania.” In Proceedings of the 13th International Conference on Structural Mechanics in Reactor Technology.

Lungu, D., T. Cornea, I. Craifaleanu, and A. Aldea. 1995. “Seismic Zonation of Romania Based on Uniform Hazard Response Ordinates.” In Proceedings of the Fifth International Conference on Seismic Zonation, I:445–52.

Lungu, D., T. Cornea, I. Craifaleanu, and S. Demetriu. 1996. “Probabilistic Seismic Hazard Analysis for Inelastic Structures on Soft Soils.” In Proceedings of Eleventh World Conference on Earthquake Engineering.

Lungu, D., S. Demetriu, C. Radu, and O. Coman. 1994. “Uniform Hazard Response Spectra for Vrancea Earthquakes in Romania.” In Proceedings of Tenth European Conference on Earthquake Engineering, 1:365–70.

Lussou, P., P. Y. Bard, F. Cotton, and Y. Fukushima. 2001. “Seismic Design Regulation Codes: Contribution of K-Net Data to Site Effect Evaluation.” Journal of Earthquake Engineering 5 (1): 13–33.

Luzi, L., D. Bindi, R. Puglia, F. Pacor, and A. Oth. 2014. “Single-Station Sigma for Italian Strong-Motion Stations.” Bulletin of the Seismological Society of America 104 (1): 467–83. https://doi.org/10.1785/0120130089.

Luzi, L., M. Massa, D. Bindi, and F. Pacor. 2011. “Strong-Motion Networks in Italy and Their Efficient Use in the Derivation of Regional and Global Predictive Models.” In Earthquake Data in Engineering Seismology: Predictive Models, Data Management and Networks, 53–69. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0152-6\_5.

Luzi, L., P. Morasca, F. Zolezzi, D. Bindi, F. Pacor, D. Spallarossa, and G. Franceschina. 2006. “Ground Motion Models for Molise Region (Southern Italy).” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Mahani, A. B., and H. Kao. 2018. “Ground Motion from \(M 1.5\) to \(3.8\) Induced Earthquakes at Hypocentral Distance \(<45\km\) in the Montney Play of Northest British Columbia, Canada.” Seismological Research Letters 89 (1): 22–34. https://doi.org/10.1785/0220170119.

Mahdavian, A. 2006. “Empirical Evaluation of Attenuation Relations of Peak Ground Acceleration in the Zagros and Central Iran.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Mahdavifar, M. R., M. K. Jafari, and M. R. Zolfaghari. 2007. “The Attenuation of Arias Intensity in Alborz and Central Iran.” In Proceedings of the Fifth International Conference on Seismology and Earthquake Engineering, Tehran, Iran.

Makropoulos, K. C. 1978. “The Statistics of Large Earthquake Magnitude and an Evaluation of Greek Seismicity.” PhD thesis, University of Edinburgh, UK.

Makropoulos, K. C., and P. W. Burton. 1985. “Seismic Hazard in Greece. II. Ground Acceleration.” Tectonophysics 117: 259–94.

Malagnini, L., A. Akinci, R. B. Herrmann, N. A. Pino, and L. Scognamiglio. 2002. “Characteristics of the Ground Motion in Northeastern Italy.” Bulletin of the Seismological Society of America 92 (6): 2186–2204.

Malagnini, L., and R. B. Herrmann. 2000. “Ground-Motion Scaling in the Region of the 1997 Umbria-Marche Earthquake (Italy).” Bulletin of the Seismological Society of America 90 (4): 1041–51.

Malagnini, L., R. B. Herrmann, and M. Di Bona. 2000. “Ground-Motion Scaling in the Apennines (Italy).” Bulletin of the Seismological Society of America 90 (4): 1062–81.

Malagnini, L., R. B. Herrmann, and K. Koch. 2000. “Regional Ground-Motion Scaling in Central Europe.” Bulletin of the Seismological Society of America 90 (4): 1052–61.

Malagnini, L., K. Mayeda, R. Uhrhammer, A. Akinci, and R. B. Herrmann. 2007. “A Regional Ground-Motion Excitation/Attenuation Model for the San Francisco Region.” Bulletin of the Seismological Society of America 97 (3): 843–62. https://doi.org/10.1785/0120060101.

Malkawi, A. I. H., and K. J. Fahmi. 1996. “Locally Derived Earthquake Ground Motion Attenuation Relations for Jordan and Conterminous Areas.” Quarterly Journal of Engineering Geology and Hydrogeology 29 (4): 309–19. https://doi.org/10.1144/GSL.QJEGH.1996.029.P4.05.

Mandal, P., N. Kumar, C. Satyamurthy, and I. P. Raju. 2009. “Ground-Motion Attenuation Relation from Strong-Motion Records of the 2001 Mw 7.7 Bhuj Earthquake Sequence (2001–2006), Gujarat, India.” Pure and Applied Geophysics 166 (3): 451–69. https://doi.org/10.1007/s00024-009-0444-y.

Manic, M. I. 1998. “A New Site Dependent Attenuation Model for Prediction of Peak Horizontal Acceleration in Northwestern Balkan.” In Proceedings of Eleventh European Conference on Earthquake Engineering.

———. 2002. “Empirical Scaling of Response Spectra for the Territory of North-Western Balkan.” In Proceedings of Twelfth European Conference on Earthquake Engineering.

Margaris, B., C. Papazachos, C. Papaioannou, N. Theodulidis, I. Kalogeras, and A. Skarlatoudis. 2002a. “Ground Motion Attenuation Relations for Shallow Earthquakes in Greece.” In Proceedings of the XXVIII General Assembly of the European Seismological Commission (ESC).

———. 2002b. “Ground Motion Attenuation Relations for Shallow Earthquakes in Greece.” In Proceedings of Twelfth European Conference on Earthquake Engineering.

Marin, S., J.-P. Avouac, M. Nicolas, and A. Schlupp. 2004. “A Probabilistic Approach to Seismic Hazard in Metropolitan France.” Bulletin of the Seismological Society of America 94 (6): 2137–63.

Massa, M., S. Marzorati, E. D’Alema, D. Di Giacomo, and P. Augliera. 2007. “Site Classification Assessment for Estimating Empirical Attenuation Relationships for Central-Northern Italy Earthquakes.” Journal of Earthquake Engineering 11 (6): 943–67. https://doi.org/10.1080/13632460701232675.

Massa, M., P. Morasca, L. Moratto, S. Marzorati, G. Costa, and D. Spallarossa. 2008. “Empirical Ground-Motion Prediction Equations for Northern Italy Using Weak- and Strong-Motion Amplitudes, Frequency Content, and Duration Parameters.” Bulletin of the Seismological Society of America 98 (3): 1319–42. https://doi.org/10.1785/0120070164.

Matsumoto, N., T. Sasaki, K. Inagaki, and T. Annaka. 2004. “Attenuation Relations of Acceleration Response Spectra at Dam Foundations in Japan.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Matsu’ura, R. S., H. Tanaka, M. Furumura, T. Takahama, and A. Noda. 2020. “A New Ground-Motion Prediction Equation of Japanese Instrumental Seismic Intensities Reflecting Source Type Characteristics in Japan.” Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120180337.

Matuschka, T. 1980. “Assessment of Seismic Hazards in New Zealand.” 222. Department of Civil Engineering, School of Engineering, University of Auckland.

Matuschka, T., and B. K. Davis. 1991. “Derivation of an Attenuation Model in Terms of Spectral Acceleration for New Zealand.” In Pacific Conference on Earthquake Engineering.

McCann Jr., M. W., and H. Echezwia. 1984. “Investigating the Uncertainty in Ground Motion Prediction.” In Proceedings of Eighth World Conference on Earthquake Engineering, II:297–304.

McCue, K. 1986. “Strong Motion Attenuation in Eastern Australia.” In Earthquake Engineering Symposium. National Conference Publication 86/15. Institution of Engineers Australia.

McCue, K., G. Gibson, and V. Wesson. 1988. “Intraplate Recording of Strong Motion in Southeastern Australia.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:355–60.

McGarr, A., and J. B. Fletcher. 2005. “Development of Ground-Motion Prediction Equations Relevant to Shallow Mining-Induced Seismicity in the Trail Mountain Area, Emery County, Utah.” Bulletin of the Seismological Society of America 95 (1): 31–47. https://doi.org/10.1785/0120040046.

McGuire, R. K. 1974. “Seismic Structural Response Risk Analysis, Incorporating Peak Response Regressions on Earthquake Magnitude and Distance.” Research Report R74-51. Massachusetts Institute of Technology, Department of Civil Engineering, Cambridge, USA.

———. 1976. “FORTRAN Computer Program for Seismic Risk Analysis.” Open-File Report 76-67. United States Department of the Interior Geological Survey.

———. 1977. “Seismic Design Spectra and Mapping Procedures Using Hazard Analysis Based Directly on Oscillator Response.” Earthquake Engineering and Structural Dynamics 5: 211–34.

———. 1978a. “A Simple Model for Estimating Fourier Amplitude Spectra of Horizontal Ground Acceleration.” Bulletin of the Seismological Society of America 68 (3): 803–22.

———. 1978b. “Seismic Ground Motion Parameter Relations.” Journal of the Geotechnical Engineering Division, ASCE 104 (GT4): 481–90.

McGuire, R. K., and T. P. Barnhard. 1979. “The Usefulness of Ground Motion Duration in Prediction of Severity of Seismic Shaking.” In Proceedings of the Second U.S. National Conference on Earthquake Engineering, 713–22.

McVerry, G. H., D. J. Dowrick, S. Sritharan, W. J. Cousins, and T. E. Porritt. 1993. “Attenuation of Peak Ground Accelerations in New Zealand.” In Proceedings of the International Workshop on Strong Motion Data, 2:23–38.

McVerry, G. H., D. J. Dowrick, and J. X. Zhao. 1995. “Attenuation of Peak Ground Accelerations in New Zealand.” In Pacific Conference on Earthquake Engineering, 3:287–92.

McVerry, G. H., and C. Holden. 2014. “A Modified Ground-Motion Prediction Equation to Accommodate Spectra of Simulated Hikurangi Subduction Interface Motions for Wellington.” Consultancy Report 2014/131. GNS Science.

McVerry, G. H., J. X. Zhao, N. A. Abrahamson, and P. G. Somerville. 2000. “Crustal and Subduction Zone Attenuation Relations for New Zealand Earthquakes.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

———. 2006. “New Zealand Acceleration Response Spectrum Attenuation Relations for Crustal and Subduction Zone Earthquakes.” Bulletin of the New Zealand Society for Earthquake Engineering 39 (4): 1–58.

Medel-Vera, C., and T. Ji. 2016. “A Stochastic Ground Motion Accelerogram Model for Northwest Europe.” Soil Dynamics and Earthquake Engineering 82: 170–95. https://doi.org/10.1016/j.soildyn.2015.12.012.

Megawati, K. 2007. “Hybrid Simulations of Ground Motions from Local Earthquakes Affecting Hong Kong.” Bulletin of the Seismological Society of America 97 (4): 1293–1307. https://doi.org/10.1785/0120060129.

Megawati, K., and T.-C. Pan. 2010. “Ground-Motion Attenuation Relationship for the Sumatran Megathrust Earthquakes.” Earthquake Engineering and Structural Dynamics 39: 827–45. https://doi.org/10.1002/eqe.967.

Megawati, K., T.-C. Pan, and K. Koketsu. 2005. “Response Spectral Attenuation Relationships for Sumatran-Subduction Earthquakes and the Seismic Hazard Implications to Singapore and Kuala Lumpur.” Soil Dynamics and Earthquake Engineering 25 (1): 11–25.

———. 2003. “Response Spectral Attenuation Relationships for Singapore and the Malay Peninsula Due to Distant Sumatran-Fault Earthquakes.” Earthquake Engineering and Structural Dynamics 32 (14): 2241–65.

Meirova, T., R. Hofstetter, Z. Ben-Avraham, D. M. Steinberg, L. Malagnini, and A. Akinci. 2008. “Weak-Motion-Based Attenuation Relationships for Israel.” Geophysical Journal International 175: 1127–40. https://doi.org/10.1111/j.1365-246X.2008.03953.x.

Melgar, D., B. W. Crowell, J. Geng, R. M. Allen, Y. Bock, S. Riquelme, E. M. Hill, M. Protti, and A. Ganas. 2015. “Earthquake Magnitude Calculation Without Saturation from the Scaling of Peak Ground Displacement.” Geophysical Research Letters 42: 5197–5205. https://doi.org/10.1002/2015GL064278.

Mezcua, J., R. M. Garcı́a Blanco, and J. Rueda. 2008. “On the Strong Ground Motion Attenuation in Spain.” Bulletin of the Seismological Society of America 98 (3): 1343–53. https://doi.org/10.1785/0120070169.

Mezcua, J., J. Rueda, and R. M. García Blanco. 2004. “Reevaluation of Historic Earthquakes in Spain.” Seismological Research Letters 75 (1): 75–81. https://doi.org/10.1785/gssrl.75.1.75.

Mickey, W. V. 1971. “Strong Motion Response Spectra.” Earthquake Notes XLII (1): 5–8.

Midorikawa, S. 1993a. “Preliminary Analysis for Attenuation of Ground Velocity on Stiff Site.” In Proceedings of the International Workshop on Strong Motion Data, 2:39–48.

———. 1993b. “Semi-Empirical Estimation of Peak Ground Acceleration from Large Earthquakes.” Tectonophysics 218: 287–95.

Midorikawa, S., and Y. Ohtake. 2004. “Variance of Peak Ground Acceleration and Velocity in Attenuation Relationships.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Milne, W. G. 1977. “Seismic Risk Maps for Canada.” In Proceedings of Sixth World Conference on Earthquake Engineering, I:930.

Milne, W. G., and A. G. Davenport. 1969. “Distribution of Earthquake Risk in Canada.” Bulletin of the Seismological Society of America 59 (2): 729–54.

Ming, D., C. Huang, G. W. Peters, and C. Galasso. 2019. “An Advanced Estimation Algorithm for Ground‐Motion Models with Spatial Correlation.” Bulletin of the Seismological Society of America 109 (2): 541–66. https://doi.org/10.1785/0120180215.

Mohammadioun, B. 1991. “The Prediction of Response Spectra for the Anti-Seismic Design of Structures Specificity of Data from Intracontinential Environments.” European Earthquake Engineering V (2): 8–17.

———. 1994. “Prediction of Seismic Motion at the Bedrock from the Strong-Motion Data Currently Available.” In Proceedings of Tenth European Conference on Earthquake Engineering, 1:241–45.

Mohammadioun, G. 1994. “Calculation of Site-Adapted Reference Spectra from the Statistical Analysis of an Extensive Strong-Motion Data Bank.” In Proceedings of Tenth European Conference on Earthquake Engineering, 1:177–81.

Mohammadnejad, A. K., S. M. Mousavi, M. Torabi, M. Mousavi, and A. H. Alavi. 2012. “Robust Attenuation Relations for Peak Time-Domain Parameters of Strong Ground Motions.” Environmental Earth Sciences 67 (1): 53–70. https://doi.org/10.1007/s12665-011-1479-9.

Molas, G. L., and F. Yamazaki. 1995. “Attenuation of Earthquake Ground Motion in Japan Including Deep Focus Events.” Bulletin of the Seismological Society of America 85 (5): 1343–58.

———. 1996. “Attenuation of Response Spectra in Japan Using New JMA Records.” Bulletin of Earthquake Resistant Structure Research Center 29 (March): 115–28.

Monguilner, C. A., N. Ponti, and S. B. Pavoni. 2000. “Relationships Between Basic Ground Motion Parameters for Earthquakes of the Argentine Western Region.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Monguilner, C. A., N. Ponti, S. B. Pavoni, and D. Richarte. 2000. “Statistical Characterization of the Response Spectra in the Argentine Republic.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Montalva, G. A. 2010. “Site-Specific Seismic Hazard Analyses.” PhD thesis, Washington State University.

Montalva, G. A., N. Bastı́as, and A. Rodriguez-Marek. 2017a. “Erratum to Ground-Motion Prediction Equation for the Chilean Subduction Zone.” Bulletin of the Seismological Society of America 107 (5): 2541. https://doi.org/10.1785/0120170189.

———. 2017b. “Ground-Motion Prediction Equation for the Chilean Subduction Zone.” Bulletin of the Seismological Society of America 107 (2): 901–11. https://doi.org/10.1785/0120160221.

———. 2017c. “Single Station Sigma in Chile.” In Proceedings of Sixteenth World Conference on Earthquake Engineering.

Moradi, A. S., N. Mirzaei, and M. Rezapour. 2004. “Attenuation Relationships of Seismic Intensity in Iran.” Journal of Earth and Space Physics 30 (1): 31.

Morasca, P., L. Malagnini, A. Akinci, D. Spallarossa, and R. B. Herrmann. 2006. “Ground-Motion Scaling in the Western Alps.” Journal of Seismology 10 (3): 315–33. https://doi.org/10.1007/s10950-006-9019-x.

Morasca, P., F. Zolezzi, D. Spallarossa, and L. Luzi. 2008. “Ground Motion Models for the Molise Region (Southern Italy).” Soil Dynamics and Earthquake Engineering 28 (3): 198–211.

Morikawa, N., and H. Fujiwara. 2013. “A New Ground Motion Prediction Equation for Japan Applicable up to \({M} 9\) Mega-Earthquake.” Journal of Disaster Research 8 (5): 878–88.

Moss, R. E. 2011. “Reduced Sigma of Ground Motion Prediction Equations Through Uncertainty Propagation.” Bulletin of the Seismological Society of America 101 (1): 250–57.

Moss, R. E. S. 2009. “Reduced Uncertainty of Ground Motion Prediction Equations Through Bayesian Variance Analysis.” PEER Report 2009/105. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, USA.

Moss, R. E. S., and A. Der Kiureghian. 2006. “Incorporating Parameter Uncertainty into Attenuation Relationships.” In Proceedings of the Eighth U.S. National Conference on Earthquake Engineering.

Motazedian, D., and G. Atkinson. 2005. “Ground-Motion Relations for Puerto Rico.” In Special Paper 385: Active Tectonics and Seismic Hazards of Puerto Rico, the Virgin Islands, and Offshore Areas, edited by P. Mann, 61–80. The Geological Society of America.

Mu, H.-Q., and K.-V. Yuen. 2016. “Ground Motion Prediction Equation Development by Heterogeneous Bayesian Learning.” Computer-Aided Civil and Infrastructure Engineering 31 (10): 761–76. https://doi.org/10.1111/mice.12215.

Munson, C. G., and C. H. Thurber. 1997. “Analysis of the Attenuation of Strong Ground Motion on the Island of Hawaii.” Bulletin of the Seismological Society of America 87 (4): 945–60.

Musson, R. M. W. 2000. “Intensity-Based Seismic Risk Assessment.” Soil Dynamics and Earthquake Engineering 20: 353–60.

———. 2005. “Intensity Attenuation in the UK.” Journal of Seismology 9 (1): 73–86.

———. 2013. “Updated Intensity Attenuation for the UK.” Open Report OR/13/029. British Geological Survey.

Musson, R. M. W., P. C. Marrow, and P. W. Winter. 1994. “Attenuation of Earthquake Ground Motion in the UK.” AEA/CS/16422000/ZJ745/004. AEA Technology Consultancy Services (SRD); British Geological Survey.

Musson, R. M. W., and P. W. Winter. 1996. “Seismic Hazard of the U.K.” Technology Report AEA/CS/16422000/ZJ745/005. AEA.

Nabilah, A. B., and T. Balendra. 2012. “Seismic Hazard Analysis for Kuala Lumpur, Malaysia.” Journal of Earthquake Engineering 16 (7): 1076–94. https://doi.org/10.1080/13632469.2012.685208.

Nath, S. K., A. Raj, K. K. S. Thingbaijam, and A. Kumar. 2009. “Ground Motion Synthesis and Seismic Scenario in Guwahati City — a Stochastic Approach.” Seismological Research Letters 80 (2): 233–42. https://doi.org/10.1785/gssrl.80.2.233.

Nath, S. K., K. K. S. Thingbaijam, S. K. Maiti, and A. Nayak. 2012. “Ground-Motion Predictions in Shillong Region, Northeast India.” Journal of Seismology 16 (3): 475–88. https://doi.org/10.1007/s10950-012-9285-8.

Nath, S. K., M. Vyas, I. Pal, and P. Sengupta. 2005. “A Seismic Hazard Scenario in the Sikkim Himalaya from Seismotectonics, Spectral Amplification, Source Parameterization, and Spectral Attenuation Laws Using Strong Motion Seismometry.” Journal of Geophysical Research 110 (B01301). https://doi.org/10.1029/2004JB003199.

Nath, S. K., M. Vyas, I. Pal, A. K. Singh, S. Mukherjee, and P. Sengupta. 2005. “Spectral Attenuation Models in the Sikkim Himalaya from the Observed and Simulated Strong Motion Events in the Region.” Current Science 88 (2): 295–303.

National Disaster Management Authority. 2010. “Development of Probablistic Seismic Hazard Map of India.”

Nazarov, A. G., and N. V. Shebalin. 1975. The Seismic Scale and Methods of Measuring Seismic Intensity. Nauka, Moscow, USSR.

Nazir, R., H. Moayedi, R. B. M. Noor, and S. Ghareh. 2016. “Development of New Attenuation Equation for Subduction Mechanisms in Malaysia Water.” Arabian Journal of Geosciences 9 (741). https://doi.org/10.1007/s12517-016-2773-3.

Nekooei, M., and H. Babaei. 2016. “Attenuation Relationships for Horizontal Component of PGV Derived from Strong-Motion Records from Iran.” Journal of Measurements in Engineering 4 (2): 112–16.

Nguyen, D. X., and T. M. T. Tran. 1999. “Determination of an Equation for Acceleration Ground Motion by a Strong Earthquake in Vietnam.” Journal of Earth Sciences 21 (3): 207–13.

Nguyen, L. M., T.-L. Lin, Y.-M. Wu, B.-S. Huang, C.-H. Chang, W.-G. Huang, T. S. Le, Q. C. Nguyen, and V. T. Dinh. 2012. “The First Peak Ground Motion Attenuation Relationships for North of Vietnam.” Journal of Asian Earth Sciences 43 (1): 241–53. https://doi.org/10.1016/j.jseaes.2011.09.012.

Niazi, M., and Y. Bozorgnia. 1992. “Behaviour of Near-Source Vertical and Horizontal Response Spectra at SMART-1 Array, Taiwan.” Earthquake Engineering and Structural Dynamics 21: 37–50.

———. 1991. “Behaviour of Near-Source Peak Horizontal and Vertical Ground Motions over SMART-1 Array, Taiwan.” Bulletin of the Seismological Society of America 81 (3): 715–32.

Nishimura, T., and M. Horike. 2003. “The Attenuation Relationships of Peak Ground Accelerations for the Horizontal and the Vertical Components Inferred from Kyoshin Network Data.” Journal of Structural and Construction Engineering (Transactions of AIJ) 571: 63–70.

Noor, R. M., S. W. Ahmad, A. Adnan, and R. Nazir. 2016. “Attenuation Function Relationship of Subduction Mechanism and Far Field Earthquake.” ARPN Journal of Engineering and Applied Sciences 11 (4): 2597–2601.

Novakovic, M., G. M. Atkinson, and K. Assatourians. 2018. “Empirically Calibrated Ground-Motion Prediction Equation for Oklahoma.” Bulletin of the Seismological Society of America 108 (5A): 2444–61. https://doi.org/10.1785/0120170331.

Nowroozi, A. A. 2005. “Attenuation Relations for Peak Horizontal and Vertical Accelerations of Earthquake Ground Motion in Iran: A Preliminary Analysis.” Journal of Seismology and Earthquake Engineering 7 (2): 109–28.

Nuttli, O. W., and R. B. Herrmann. 1987. “Ground Motion Relations for Eastern North American Earthquakes.” In Proceedings of the Third International Conference on Soil Dynamics & Earthquake Engineering, II:231–41.

Obaid, L., S. Alani, M. Omar, S. Barakat, M. Arab, M. Leblouba, A. Shanableh, and A. Tahmaz. 2019. “The Development of a Local Ground Motion Prediction Equation from Recorded Data.” In Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering. https://doi.org/10.11159/icgre19.181.

Ohno, S., T. Ohta, T. Ikeura, and M. Takemura. 1993. “Revision of Attenuation Formula Considering the Effect of Fault Size to Evaluate Strong Motion Spectra in Near Field.” Tectonophysics 218: 69–81.

Ohno, S., M. Takemura, M. Niwa, and K. Takahashi. 1996. “Intensity of Strong Ground Motion on Pre-Quaternary Stratum and Surface Soil Amplifications During the 1995 Hyogo-Ken Nanbu Earthquake, Japan.” Journal of Physics of the Earth 44 (5): 623–48.

Ohsaki, Y., Y. Sawada, K. Hayashi, B. Ohmura, and C. Kumagai. 1980. “Spectral Characteristics of Hard Rock Motions.” In Proceedings of Seventh World Conference on Earthquake Engineering, 2:231–38.

Ohsaki, Y., M. Watabe, and M. Tohdo. 1980. “Analyses on Seismic Ground Motion Parameters Including Vertical Components.” In Proceedings of Seventh World Conference on Earthquake Engineering, 2:97–104.

Olszewska, D. 2006. “Attenuation Relations of Ground Motion Acceleration Response Spectra for the Polkowice Region.” Publications of the Institute of Geophysics of the Polish Academy of Sciences M-29 (395).

Ordaz, M., J. M. Jara, and S. K. Singh. 1989. “Riesgo Sı́smico Y Espectros de Diseño En El Estado de Guerrero.” 8782/9745. UNAM Instituto de Ingenierı́a.

Ordaz, M., S. K. Singh, and A. Arciniega. 1994. “Bayesian Attenuation Regressions: An Application to Mexico City.” Geophysical Journal International 117 (2): 335–44.

Ornthammarath, T. 2010. “Influence of Hazard Modeling Methods and the Uncertainty of GMPEs on the Results of Probabilistic Seismic Hazard Analysis.” PhD thesis, ROSE School, University of Pavia, Italy.

Ornthammarath, T., J. Douglas, R. Sigbjörnsson, and C. G. Lai. 2010. “Assessment of Strong Ground Motion Variability in Iceland.” In Proceedings of Fourteenth European Conference on Earthquake Engineering.

———. 2011. “Assessment of Ground Motion Variability and Its Effects on Seismic Hazard Analysis: A Case Study for Iceland.” Bulletin of Earthquake Engineering 9 (4): 931–53. https://doi.org/10.1007/s10518-011-9251-9.

Orphal, D. L., and J. A. Lahoud. 1974. “Prediction of Peak Ground Motion from Earthquakes.” Bulletin of the Seismological Society of America 64 (5): 1563–74.

Oskorbin, L. S. 1977. “Equations of Seismic Field for Sakhalin Earthquakes.” In Seismicheskoe Raionirovanie Sakhalina (Seismic Zoning of Sakhalin), 3–22. Nauch. Tsentr Akad. Nauk SSSR.

Oth, A., H. Miyake, and D. Bindi. 2017. “On the Relation of Earthquake Stress Drop and Ground Motion Variability.” Journal of Geophysical Research: Solid Earth 122. https://doi.org/10.1002/2017JB014026.

Òlafsson, S., and R. Sigbjörnsson. 2012. “Near-Source Decay of Seismic Waves in Iceland.” In Proceedings of Fifteenth World Conference on Earthquake Engineering.

Ólafsson, S., and R. Sigbjörnsson. 1999. “A Theoretical Attenuation Model for Earthquake-Induced Ground Motion.” Journal of Earthquake Engineering 3 (3): 287–315.

Ólafsson, S., R. Sigbjörnsson, and R. Rupakhety. 2018. “Determination of Parameters for Stochastic Strong Motion Models Representing Earthquakes in the South Iceland Seismic Zone.” In Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson, edited by R. Rupakhety and S. Ólafsson, 44:193–207. Geotechnical, Geological and Earthquake Engineering. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-62099-2_10.

Özbey, C., A. Sari, L. Manuel, M. Erdik, and Y. Fahjan. 2004. “An Empirical Attenuation Relationship for Northwestern Turkey Ground Motion Using a Random Effects Approach.” Soil Dynamics and Earthquake Engineering 24 (2): 115–25.

Paciello, A., D. Rinaldis, and R. Romeo. 2000. “Incorporating Ground Motion Parameters Related to Earthquake Damage into Seismic Hazard Analysis.” In Proceedings of the Sixth International Conference on Seismic Zonation, 321–26.

Pacific Earthquake Engineering Research Center. 2013. “NGA-West2 Ground Motion Prediction Equations for Vertical Ground Motions.” 2013/24. Pacific Earthquake Engineering Research Center, Headquarters at the University of California, Berkeley, USA.

Pacific Earthquake Engineering Research Center. 2015. “NGA-East: Median Ground-Motion Models for the Central and Eastern North America Region.” 2015/04. PEER, University of California, Berkeley, USA.

Pacor, F., D. Spallarossa, A. Oth, L. Luzi, R. Puglia, L. Cantore, A. Mercuri, M. D’Amico, and D. Bindi. 2016. “Spectral Models for Ground Motion Prediction in the L’Aquila Region (Central Italy): Evidence for Stress-Drop Dependence on Magnitude and Depth.” Geophysical Journal International 204 (2): 697–718. https://doi.org/10.1093/gji/ggv448.

Pancha, A., and J. J. Taber. 1997. “Attenuation of Weak Ground Motions: A Report Prepared for the New Zealand Earthquake Commission.” School of Earth Sciences, Victoria University of Wellington, New Zealand.

Pankow, K. L., and J. C. Pechmann. 2004. “The SEA99 Ground-Motion Predictive Relations for Extensional Tectonic Regimes: Revisions and a New Peak Ground Velocity Relation.” Bulletin of the Seismological Society of America 94 (1): 341–48.

———. 2006. “Erratum: The SEA99 Ground-Motion Predictive Relations for Extensional Tectonic Regimes: Revisions and a New Peak Ground Velocity Relation.” Bulletin of the Seismological Society of America 96 (1): 364. https://doi.org/10.1785/0120050184.

Paolucci, R., A. Rovelli, E. Faccioli, C. Cauzzi, D. Finazzi, M. Vanini, C. Di Alessandro, and G. Calderoni. 2008. “On the Reliability of Long Period Spectral Ordinates from Digital Accelerograms.” Earthquake Engineering and Structural Dynamics 37 (5): 697–710.

Parvez, I. A., A. A. Gusev, G. F. Panza, and A. G. Petukhin. 2001. “Preliminary Determination of the Interdependence Among Strong-Motion Amplitude, Earthquake Magnitude and Hypocentral Distance for the Himalayan Region.” Geophysical Journal International 144 (3): 577–96.

Pasolini, C., D. Albarello, P. Gasperini, V. D’Amico, and B. Lolli. 2008. “The Attenuation of Seismic Intensity in Italy, Part II: Modeling and Validation.” Bulletin of the Seismological Society of America 98 (2): 692–708. https://doi.org/10.1785/0120070021.

Pasyanos, M. 2015. “Validation of Attenuation Models for Ground Motion Applications in Central and Eastern North America.” Earthquake Spectra 31 (4): 2281–2300. https://doi.org/10.1193/052714EQS074M.

Pathak, J., D. K. Paul, and P. N. Godbole. 2006. “ANN Based Attenuation Relationship for Estimation of PGA Using Indian Strong-Motion Data.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Peng, K., L. Xie, S. Li, D. M. Boore, W. D. Iwan, and T. L. Teng. 1985. “The Near-Source Strong-Motion Accelerograms Recorded by an Experimental Array in Tangshan, China.” Physics of the Earth and Planetary Interiors 38: 92–109.

Peng, K.-Z., F. T. Wu, and L. Song. 1985. “Attenuation Characteristics of Peak Horizontal Acceleration in Northeast and Southwest China.” Earthquake Engineering and Structural Dynamics 13 (3): 337–50.

Perea, T., and E. Sordo. 1998. “Direct Response Spectrum Prediction Including Local Site Effects.” In Proceedings of Eleventh European Conference on Earthquake Engineering.

Perus, I., and P. Fajfar. 2009. “How Reliable Are the Ground Motion Prediction Equations?” In 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20).

———. 2010. “Ground-Motion Prediction by a Non-Parametric Approach.” Earthquake Engineering and Structural Dynamics 39 (12): 1395–1416. https://doi.org/10.1002/eqe.1007.

Peruzza, L., R. Azzaro, R. Gee, S. D’Amico, H. Langer, G. Lombardo, B. Pace, et al. 2017. “When Probabilistic Seismic Hazard Climbs Volcanoes: The Mt. Etna Case, Italy – Part 2: Computational Implementation and First Results.” Natural Hazards and Earth System Sciences 17: 1999–2015. https://doi.org/10.5194/nhess-17-1999-2017.

Petersen, M. D., J. Dewey, S. Hartzell, C. Mueller, S. Harmsen, A. D. Frankel, and K. Rukstales. 2004. “Probabilistic Seismic Hazard Analysis for Sumatra, Indonesia and Across the Southern Malaysian Peninsula.” Tectonophysics 390 (1–4): 141–58. https://doi.org/10.1016/j.tecto.2004.03.026.

Petersen, M. D., A. D. Frankel, S. C. Harmsen, C. S. Mueller, K. M. Haller, R. L. Wheeler, R. L. Wesson, et al. 2008. “Documentation for the 2008 Update of the United States National Seismic Hazard Maps.” Open-File Report 2008-1128. U.S. Department of the Interior, U.S. Geological Survey.

Petersen, M. D., M. P. Moschetti, P. M. Powers, C. S. Mueller, K. M. Haller, A. D. Frankel, Y. Zeng, et al. 2014. “Documentation for the 2014 Update of the United States National Seismic Hazard Maps.” Open-File Report 2014-1091. U.S. Department of the Interior, U.S. Geological Survey. https://doi.org/10.333/ofr20141091.

Petrovski, D., and A. Marcellini. 1988. “Prediction of Seismic Movement of a Site: Statisical Approach.” In Proc. UN Sem. On Predict. Of Earthquakes.

Pezeshk, S., A. Zandieh, K. W. Campbell, and B. Tavakoli. 2018. “Ground-Motion Prediction Equations for Central and Eastern North America Using the Hybrid Empirical Method and NGA-West2 Empirical Ground-Motion Models.” Bulletin of the Seismological Society of America 108 (4): 2278–2304. https://doi.org/10.1785/0120170179.

Pezeshk, S., A. Zandieh, and A. Haji-Soltani. 2021. “A Ground‐Motion Model for the Gulf Coast Region of the United States.” Bulletin of the Seismological Society of America 111 (6): 3261–77. https://doi.org/10.1785/0120210023.

Pezeshk, S., A. Zandieh, and B. Tavakoli. 2011. “Hybrid Empirical Ground-Motion Prediction Equations for Eastern North Amercia Using NGA Models and Updated Seismological Parameters.” Bulletin of the Seismological Society of America 101 (4): 1859–70. https://doi.org/10.1785/0120100144.

Pétursson, G. G., and K. S. Vogfjörd. 2009. “Attenuation Relations for Near- and Far-Field Peak Ground Motion (PGV, PGA) and New Magnitude Estimates for Large Earthquakes in SW-Iceland.” VÍ 2009-012. Icelandic Meteorological Office, Reykjavik, Iceland.

Phung, V.-B., C. H. Loh, S. H. Chao, and N. A. Abrahamson. 2020. “Ground Motion Prediction Equation for Taiwan Subduction Zone Earthquakes.” Earthquake Spectra 36 (3): 1331–58. https://doi.org/10.1177/8755293020906829.

Phung, V.-B., C.-H. Loh, S.-H. Chao, and N. A. Abrahamson. 2018. “Analysis of Epistemic Uncertainty Associated with GMPEs and Their Weight Within the Logic Tree for PSHA: Application to Taiwan.” Terrestrial Atmospheric and Oceanic Science 29 (6): 611–33.

Phung, V.-B., C. H. Loh, S. H. Chao, B. S. J. Chiou, and B.-S. Huang. 2020. “Ground Motion Prediction Equation for Crustal Earthquakes in Taiwan.” Earthquake Spectra 36 (4): 2129–64. https://doi.org/10.1177/8755293020919415.

PML. 1982. “British Earthquakes.” 115/82. Principia Mechanica Ltd., London.

———. 1985. “Seismological Studies for UK Hazard Analysis.” 346/85. Principia Mechanica Ltd., London.

———. 1988. “UK Uniform Risk Spectra.” HPC-IP-096013. Principia Mechanica Ltd., London.

Podili, B., and S. T. G. Raghukanth. 2019. “Ground Motion Prediction Equations for Higher Order Parameters.” Soil Dynamics and Earthquake Engineering 118: 98–110. https://doi.org/10.1016/j.soildyn.2018.11.027.

Popescu, E., C. O. Cioflan, M. Radulian, A. O. Placinta, and I. A. Moldovan. 2007. “Attenuation Relations for the Seismic Ground Motion Induced by Vrancea Intermediate-Depth Earthquakes.” In International Symposium on Strong Vrancea Earthquakes and Risk Mitigation.

Pousse, G., C. Berge-Thierry, L. F. Bonilla, and P.-Y. Bard. 2005. “Eurocode 8 Design Response Spectra Evaluation Using the K-Net Japanese Database.” Journal of Earthquake Engineering 9 (4): 547–74. https://doi.org/10.1142/S1363246905002067.

Pousse, G., L. F. Bonilla, F. Cotton, and L. Margerin. 2006. “Non Stationary Stochastic Simulation of Strong Ground Motion Time Histories Including Natural Variability: Application to the K-Net Japanese Database.” Bulletin of the Seismological Society of America 96 (6): 2103–17. https://doi.org/10.1785/0120050134.

Quadros, L., M. Assump cão, and A. P. Trindade de Souza. 2019. “Seismic Intensity Attenuation for Intraplate Earthquakes in Brazil with the Re-Evaluation of Historical Seismicity.” Seismological Research Letters 90 (6): 2217–26. https://doi.org/10.1785/0220190120.

Quijada, P., E. Gajardo, M. Franke, M. Kozuch, and J. Grases. 1993. “Analisis de Amenaza Sı̀smica de Venezuela Para Nuevo Mapa de Zonificaciun Con Fines de Ingenierı̀a.” In Memorias Del Octavo Seminario Latinoamericano de Ingenierı̀a Sismo-Reistente. Merida, Mexico.

Radu, C., D. Lungu, S. Demetriu, and O. Coman. 1994. “Recurrence, Attenuation and Dynamic Amplification for Intermediate Depth Vrancea Earthquakes.” In Proceedings of the XXIV General Assembly of the ESC, III:1736–45.

Raghucharan, M. C., S. N. Somala, O. Erteleva, and E. Rogozhi. 2021. “Seismic Attenuation Model for Data Gap Regions Using Recorded and Simulated Ground Motions.” Natural Hazards 107: 423–46. https://doi.org/10.1007/s11069-021-04589-w.

Raghu Kanth, S. T. G., and R. N. Iyengar. 2006. “Seismic Hazard Estimation for Mumbai City.” Current Science 91 (11): 1486–94.

———. 2007. “Estimation of Seismic Spectral Acceleration in Peninsular India.” Journal of Earth System Science 116 (3): 199–214.

Raghukanth, S. T. G., and B. Kavitha. 2014. “Ground Motion Relations for Active Regions in India.” Pure and Applied Geophysics 171 (9): 2241–75. https://doi.org/10.1007/s00024-014-0807-x.

Rahpeyma, S., B. Halldorsson, B. Hrafnkelsson, and S. Jónsson. 2018. “Bayesian Hierarchical Model for Variations in Earthquake Peak Ground Acceleration Within Small-Aperture Arrays.” Environmetrics 29 (e2497). https://doi.org/10.1002/env.2497.

Rajabi, A. M., M. Khamehchiyan, M. R. Mahdavifar, and V. Del Gaudio. 2010. “Attenuation Relation of Arias Intensity for Zagros Mountains Region (Iran).” Soil Dynamics and Earthquake Engineering 30: 110–18. https://doi.org/10.1016/j.soildyn.2009.09.008.

Ramazi, H. R., and V. Schenk. 1994. “Preliminary Results Obtained from Strong Ground Motion Analzses [Sic] of Iranian Earthquakes.” In Proceedings of the XXIV General Assembly of the ESC, III:1762–70.

Ramkrishnan, R., K. Sreevalsa, and T. G. Sitharam. 2020. “Strong Motion Data Based Regional Ground Motion Prediction Equations for North East India Based on Non-Linear Regression Models.” Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2020.1778586.

———. 2021. “Development of New Ground Motion Prediction Equation for the North and Central Himalayas Using Recorded Strong Motion Data.” Journal of Earthquake Engineering 25 (10): 1903–26. https://doi.org/10.1080/13632469.2019.1605318.

Raoof, M., R. B. Herrmann, and L. Malagnini. 1999. “Attenuation and Excitation of Three-Component Ground Motion in Southern California.” Bulletin of the Seismological Society of America 89 (4): 888–902.

Rathje, E. M., N. A. Abrahamson, and J. D. Bray. 1998. “Simplified Frequency Content Estimates of Earthquake Ground Motions.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE 124 (2): 150–59. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(150.

Rathje, E. M., F. Faraj, S. Russell, and J. D. Bray. 2004. “Empirical Relationships for Frequency Content Parameters of Earthquake Ground Motions.” Earthquake Spectra 20 (1): 119–44.

Reyes, C. 1998. “El Estado Limite de Servicio En El Diseño Sismico de Edificios.” PhD thesis, School of Engineering, National Autonomous University of Mexico (UNAM).

Rhoades, D. A. 1997. “Estimation of Attenuation Relations for Strong-Motion Data Allowing for Individual Earthquake Magnitude Uncertainties.” Bulletin of the Seismological Society of America 87 (6): 1674–8.

Richter, C. F. 1958. Elementary Seismology. San Francisco, USA: Freeman; Co.

Rietbrock, A., and B. Edwards. 2019. “Update of the UK Stochastic Ground Motion Model Using a Decade of Broadband Data.” In 2019 Seced Conference.

Rietbrock, A., F. Strasser, and B. Edwards. 2013. “A Stochastic Earthquake Ground-Motion Prediction Model for the United Kingdom.” Bulletin of the Seismological Society of America 103 (1): 57–77.

Rinaldis, D., R. Berardi, N. Theodulidis, and B. Margaris. 1998. “Empirical Predictive Models Based on a Joint Italian & Greek Strong-Motion Database: I, Peak Ground Acceleration and Velocity.” In Proceedings of Eleventh European Conference on Earthquake Engineering.

Rodriguez-Marek, A., and G. Montalva. 2010. “Uniform Hazard Spectra for Site-Specific Applications Including Uncertainties in Site-Response.” Final technical report. Washington State University, USA.

Rodriguez-Marek, A., G. A. Montalva, F. Cotton, and F. Bonilla. 2011. “Analysis of Single-Station Standard Deviation Using the KiK-Net Data.” Bulletin of the Seismological Society of America 101 (3): 1242–58. https://doi.org/10.1785/0120100252.

Rodrı́guez-Pérez, Q. 2014. “Ground-Motion Prediction Equations for Near-Trench Interplate and Normal-Faulting Inslab Subduction Zone Earthquakes in Mexico.” Bulletin of the Seismological Society of America 104 (1): 427–38. https://doi.org/10.1785/0120130032.

Rogers, A. M., D. M. Perkins, D. B. Hampson, and K. W. Campbell. 1991. “Investigations of Peak Acceleration Data for Site Effects.” In Proceedings of the Fourth International Conference on Seismic Zonation, II:229–36.

Romeo, R. W., G. Tranfaglia, and S. Castenetto. 1996. “Engineering-Developed Relations Derived from the Strongest Instrumentally-Detected Italian Earthquakes.” In Proceedings of Eleventh World Conference on Earthquake Engineering.

Ruhl, C. J., D. Melgar, J. Geng, D. E. Goldberg, B. W. Crowell, R. M. Allen, Y. Bock, et al. 2019. “A Global Database of Strong-Motion Displacement GNSS Recordings and an Example Application to PGD Scaling.” Seismological Research Letters 90 (1): 271–79. https://doi.org/10.1785/0220180177.

Ruiz, S., and G. R. Saragoni. 2005. “Formulas de Atenuación Para La Subducción de Chile Considerando Los Dos Mecanismos de Sismogenesis Y Los Efectos Del Suelo.” In Congreso Chileno de Sismologı́a E Ingenierı́a Antisı́smica, Novenas Jornadas.

Rupakhety, R., and R. Sigbjörnsson. 2009. “Ground-Motion Prediction Equations (GMPEs) for Inelastic Response and Structural Behaviour Factors.” Bulletin of Earthquake Engineering 7 (3): 637–59. https://doi.org/10.1007/s10518-009-9105-x.

Rupakhety, R., S. U. Sigurdsson, A. S. Papageorgiou, and R. Sigbjörnsson. 2011. “Quantification of Ground-Motion Parameters and Response Spectra in the Near-Fault Region.” Bulletin of Earthquake Engineering 9: 893–930. https://doi.org/10.1007/s10518-011-9255-5.

Sabetta, F., and A. Pugliese. 1987. “Attenuation of Peak Horizontal Acceleration and Velocity from Italian Strong-Motion Records.” Bulletin of the Seismological Society of America 77 (5): 1491–1513.

———. 1996. “Estimation of Response Spectra and Simulation of Nonstationary Earthquake Ground Motions.” Bulletin of the Seismological Society of America 86 (2): 337–52.

Sadeghi, H., A. Shooshtari, and M. Jaladat. 2010. “Prediction of Horizontal Response Spectra of Strong Ground Motions in Iran and Its Regions.” In Proceedings of the Ninth U.S. National and 10th Canadian Conference on Earthquake Engineering: Reaching Beyond Borders.

Sadigh, K., C.-Y. Chang, N. A. Abrahamson, S. J. Chiou, and M. S. Power. 1993. “Specification of Long-Period Ground Motions: Updated Attenuation Relationships for Rock Site Conditions and Adjustment Factors for Near-Fault Effects.” In Proceedings of ATC-17-1 Seminar on Seismic Isolation, Passive Energy Dissipation, and Active Control, 59–70.

Sadigh, K., C.-Y. Chang, J. A. Egan, F. Makdisi, and R. R. Youngs. 1997. “Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data.” Seismological Research Letters 68 (1): 180–89.

Sadigh, K., M. S. Power, and R. R. Youngs. 1978. “Peak Horizontal and Vertical Accelerations, Velocities, and Displacements on Deep Soil Sites During Moderately Strong Earthquakes.” In Proceedings of the Second International Conference on Microzonation for Safer Construction — Research and Application, 801–11.

Sadigh, K., R. R. Youngs, and M. S. Power. 1978. “A Study of Attenuation of Peak Horizontal Accelerations for Moderately Strong Earthquakes.” In Proceedings of Sixth European Conference on Earthquake Engineering, 1:243–50.

Sadigh, R. K., and J. A. Egan. 1998. “Updated Relationships for Horizontal Peak Ground Velocity and Peak Ground Displacement for Shallow Crustal Earthquakes.” In Proceedings of the Sixth U.S. National Conference on Earthquake Engineering.

Saeki, M., T. Katayama, and T. Iwasaki. 1977. “Statistical Characteristics of Accelerograms Recorded in Japan.” In 32th Annual Convention, JSCE, Part I:304–5.

Saffari, H., Y. Kuwata, S. Takada, and A. Mahdavian. 2010. “Spectral Acceleration Attenuation for Seismic Hazard Analysis in Iran.” In Proceedings of the Ninth U.S. National and 10th Canadian Conference on Earthquake Engineering: Reaching Beyond Borders.

———. 2012. “Updated PGA, PGV, and Spectral Acceleration Attenuation Relations for Iran.” Earthquake Spectra 28 (1): 257–76. https://doi.org/10.1193/1.3673622.

Sahakian, V., A. Baltay, T. Hanks, J. Buehler, F. Vernon, D. Kilb, and N. Abrahamson. 2018. “Decomposing Leftovers: Event, Path, and Site Residuals for a Small-Magnitude Anza Region GMPE.” Bulletin of the Seismological Society of America 108 (5A): 2478–92. https://doi.org/10.1785/0120170376.

Sahakian, V., A. Baltay, T. C. Hanks, J. Buehler, F. L. Vernon, D. Kilb, and N. A. Abrahamson. 2019. “Ground Motion Residuals, Path Effects, and Crustal Properties: A Pilot Study in Southern California.” Journal of Geophysical Research 124 (6): 5738–53. https://doi.org/10.1029/2018JB016796.

Saini, S., M. L. Sharma, and S. Mukhopadhyay. 2002. “Strong Ground Motion Empirical Attenuation Relationship for Seismic Hazard Estimation in Himalaya Region.” In 12th Symposium on Earthquake Engineering, I:143–50.

Sakamoto, S., Y. Uchiyama, and S. Midorikawa. 2006. “Variance of Response Spectra in Attenuation Relationship.” In Proceedings of the Eighth U.S. National Conference on Earthquake Engineering.

Sanchez, A. R., and J. M. Jara. 2001. “Estimación Del Peligro Sı́smico de Morelia.” Ciencia Nicolaita 29: 63–76.

Sandıkkaya, M. A., and S. Akkar. 2017. “Cumulative Absolute Velocity, Arias Intensity and Significant Duration Predictive Models from a Pan-European Strong-Motion Dataset.” Bulletin of Earthquake Engineering 15 (5): 1881–98. https://doi.org/10.1007/s10518-016-0066-6.

Sandikkaya, M. A., S. Akkar, and P.-Y. Bard. 2013. “A Nonlinear Site Amplifcation Model for the New Pan-European Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 103 (1): 19–32.

Saragoni, R., M. Astroza, and S. Ruiz. 2004. “Comparative Study of Subduction Earthquake Ground Motion of North, Central and South America.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Sarma, S. K., and M. W. Free. 1995. “The Comparison of Attenuation Relationships for Peak Horizontal Acceleration in Intraplate Regions.” In Pacific Conference on Earthquake Engineering, 2:175–84.

Sarma, S. K., and M. Srbulov. 1998. “A Uniform Estimation of Some Basic Ground Motion Parameters.” Journal of Earthquake Engineering 2 (2): 267–87.

———. 1996. “A Simplified Method for Prediction of Kinematic Soil-Foundation Interaction Effects on Peak Horizontal Acceleration of a Rigid Foundation.” Earthquake Engineering and Structural Dynamics 25 (8): 815–36.

Savy, J. B., A. C. Boussonnade, R. W. Mensing, and C. M. Short. 1993. “Eastern U.S. Seismic Hazard Characterization Update.” UCRL-ID-115111. Lawrence Livermore National Laboratory, USA.

Scasserra, G., J. P. Stewart, P. Bazzurro, G. Lanzo, and F. Mollaioli. 2009. “A Comparison of NGA Ground-Motion Prediction Equations to Italian Data.” Bulletin of the Seismological Society of America 99 (5): 2961–78. https://doi.org/10.1785/0120080133.

Schenk, V. 1982. “Peak Particle Ground Motions in Earthquake Near-Field.” In Proceedings of Seventh European Conference on Earthquake Engineering, 2:211–17.

———. 1984. “Relations Between Ground Motions and Earthquake Magnitude, Focal Distance and Epicentral Intensity.” Engineering Geology 20 (1/2): 143–51.

Scherbaum, F., F. Cotton, and P. Smit. 2004. “On the Use of Response Spectral-Reference Data for the Selection and Ranking of Ground-Motion Models for Seismic-Hazard Analysis in Regions of Moderate Seismicity: The Case of Rock Motion.” Bulletin of the Seismological Society of America 94 (6): 2164–85. https://doi.org/10.1785/0120030147.

Scherbaum, F., E. Delavaud, and C. Riggelsen. 2009. “Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective.” Bulletin of the Seismological Society of America 99 (6): 3234–47. https://doi.org/10.1785/0120080347.

Scherbaum, F., N. M. Kuehn, M. Ohrnberger, and A. Koehler. 2010. “Exploring the Proximity of Ground-Motion Models Using High-Dimensional Visualization Techniques.” Earthquake Spectra 26 (4): 1117–38. https://doi.org/10.1193/1.3478697.

Schmidt, V., A. Dahle, and H. Bungum. 1997. “Costa Rican Spectral Strong Motion Attenuation.” NORSAR, Kjeller, Norway.

Schnabel, P. B., and H. B. Seed. 1973. “Accelerations in Rock for Earthquakes in the Western United States.” Bulletin of the Seismological Society of America 63 (2): 501–16.

Schwarz, J., C. Ende, J. Habenberger, D. H. Lang, M. Baumbach, H. Grosser, C. Milereit, S. Karakisa, and S. Zünbül. 2002. “Horizontal and Vertical Response Spectra on the Basis of Strong-Motion Recordings from the 1999 Turkey Earthquakes.” In Proceedings of the XXVIII General Assembly of the European Seismological Commission (ESC).

Scognamiglio, L., L. Malagnini, and A. Akinci. 2005. “Ground-Motion Scaling in Eastern Sicily, Italy.” Bulletin of the Seismological Society of America 95 (2): 568–78. https://doi.org/10.1785/0120030124.

Sedaghati, F., and S. Pezeshk. 2016. “Comparative Study on Parameter Estimation Method for Attenuation Relationships.” Journal of Geophysics and Engineering 13: 912–27. https://doi.org/10.1088/1742-2132/13/6/912.

———. 2017. “Partially Nonergodic Empirical Ground-Motion Models for Predicting Horizontal and Vertical PGV, PGA, and 5% Damped Linear Acceleration Response Spectra Using Data from the Iranian Plateau.” Bulletin of the Seismological Society of America 107 (2): 934–48. https://doi.org/10.1785/0120160205.

Seed, H. B., R. Murarka, J. Lysmer, and I. M. Idriss. 1976. “Relationships of Maximum Acceleration, Maximum Velocity, Distance from Source, and Local Site Conditions for Moderately Strong Earthquakes.” Bulletin of the Seismological Society of America 66 (4): 1323–42.

Segou, M., and N. Voulgaris. 2013. “The Use of Stochastic Optimization in Ground Motion Prediction.” Earthquake Spectra 29 (1): 283–308. https://doi.org/10.1193/1.4000098.

Sen, M. K. 1990. “Deep Structural Complexity and Site Response in Los Angeles Basin.” In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, 1:545–53.

Sewell, R. T. 1989. “Damage Effectiveness of Earthquake Ground Motion: Characterizations Based on the Performance of Structures and Equipment.” PhD thesis, Stanford University, California, USA.

Seyhan, E., and J. P. Stewart. 2014. “Semi-Empirical Nonlinear Site Amplification from NGA-West 2 Data and Simulations.” Earthquake Spectra 30 (3): 1241–56. https://doi.org/10.1193/063013EQS181M.

Shabestari, K. T., and F. Yamazaki. 1997. “Attenuation Relation of JMA Intensity Based on JMA-87-Type Accelerometer Records.” In Proceedings of the JSCE Earthquake Engineering Symposium, 24:169–72. https://doi.org/10.11532/proee1997.24.169.

———. 2000. “Attenuation Relation of Response Spectra in Japan Considering Site-Specific Term.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Shabestari, T. K., and F. Yamazaki. 1998. “Attenuation of JMA Seismic Intensity Using Recent JMA Records.” In Proceedings of the 10th Japan Earthquake Engineering Symposium, 1:529–34.

Shah, H. C., and M. Movassate. 1975. “Seismic Risk Analysis — California State Water Project.” In Proceedings of Fifth European Conference on Earthquake Engineering.

Shah, M. A., T. Iqbal, M. Qaisar, N. Ahmed, and M. Tufail. 2012. “Development of Attenuation Relationship for Northern Pakistan.” In Proceedings of Fifteenth World Conference on Earthquake Engineering.

Shahidzadeh, M. S., and A. Yazdani. 2017. “A Bayesian Updating Applied to Earthquake Ground-Motion Prediction Equations for Iran.” Journal of Earthquake Engineering 21 (2): 290–324. https://doi.org/10.1080/13632469.2016.1158754.

Shahjouei, A., and S. Pezeshk. 2016. “Alternative Hybrid Empirical Ground-Motion Model for Central and Eastern North America Using Hybrid Simulations and NGA-West 2 Models.” Bulletin of the Seismological Society of America 106 (2): 734–54. https://doi.org/10.1785/0120140367.

Sharma, M., and H. Bungum. 2006. “New Strong Ground-Motion Spectral Acceleration Relations for the Himalayan Region.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Sharma, M. L. 2000. “Attenuation Relationship for Estimation of Peak Ground Vertical Acceleration Using Data from Strong Motion Arrays in India.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

———. 1998. “Attenuation Relationship for Estimation of Peak Ground Horizontal Acceleration Using Data from Strong-Motion Arrays in India.” Bulletin of the Seismological Society of America 88 (4): 1063–9.

Sharma, M. L., J. Douglas, H. Bungum, and J. Kotadia. 2009. “Ground-Motion Prediction Equations Based on Data from the Himalayan and Zagros Regions.” Journal of Earthquake Engineering 13 (8): 1191–1210. https://doi.org/10.1080/13632460902859151.

Sharma, N., and V. Convertito. 2018. “Update, Comparison, and Interpretation of the Ground-Motion Prediction Equation for ‘The Geysers’ Geothermal Area in the Light of New Data.” Bulletin of the Seismological Society of America 108 (6): 3645–55. https://doi.org/10.1785/0120170350.

Sharma, N., V. Convertito, N. Maercklin, and A. Zollo. 2013. “Ground-Motion Prediction Equations for The Geysers Geothermal Area Based on Induced Seismicity Records.” Bulletin of the Seismological Society of America 103 (1): 117–30. https://doi.org/10.1785/0120120138.

Shi, S., and J. Shen. 2003. “A Study on Attenuation Relations of Strong Earth Movements in Shanghai and Its Adjacent Area.” Earthquake Research in China 19: 315–23.

Shoushtari, A. V., A. B. Adnan, and M. Zare. 2016. “On the Selection of Ground–Motion Attenuation Relations for Seismic Hazard Assessment of the Peninsular Malaysia Region Due to Distant Sumatran Subduction Intraslab Earthquakes.” Soil Dynamics and Earthquake Engineering 82: 123–37. https://doi.org/10.1016/j.soildyn.2015.11.012.

Shoushtari, A. V., A. Z. Adnan, and M. Zare. 2018. “Ground Motion Prediction Equations for Distant Subduction Interface Earthquakes Based on Empirical Data in the Malay Peninsula and Japan.” Soil Dynamics and Earthquake Engineering 109: 339–53. https://doi.org/10.1016/j.soildyn.2018.03.024.

Si, H., and S. Midorikawa. 1999. “New Attenuation Relationships for Peak Ground Acceleration and Velocity Considering Effects of Fault Type and Site Condition.” Journal of Structural and Construction Engineering, AIJ 523: 63–70.

———. 2000. “New Attenuation Relations for Peak Ground Acceleration and Velocity Considering Effects of Fault Type and Site Condition.” In Proceedings of Twelfth World Conference on Earthquake Engineering.

Sigbjörnsson, R. 1990. “Strong Motion Measurements in Iceland and Seismic Risk Assessment.” In Proceedings of Ninth European Conference on Earthquake Engineering, 10-A:215–22.

Sigbjörnsson, R., and N. N. Ambraseys. 2003. “Uncertainty Analysis of Strong Ground Motion.” Bulletin of Earthquake Engineering 1 (3): 321–47.

Sigbjörnsson, R., and G. I. Baldvinsson. 1992. “Seismic Hazard and Recordings of Strong Ground Motion in Iceland.” In Proceedings of Tenth World Conference on Earthquake Engineering, 1:419–24. Rotterdam, The Netherlands: A. A. Balkema.

Sigbjörnsson, R., and A. S. Elnashai. 2006. “Hazard Assessment of Dubai, United Arab Emirates, for Close and Distant Earthquakes.” Journal of Earthquake Engineering 10 (5): 749–73.

Silva, W., and N. A. Abrahamson. 1992. “Quantification of Long Period Strong Ground Motion Attenuation for Engineering Design.” In Proceedings of (Strong Motion Instrumentation Program) Smip92 Seminar on Seismological and Engineering Implications of Recent Strong-Motion Data, edited by M. J. Huang. California Division of Mines; Geology, Sacramento, USA.

Silva, W., N. Gregor, and R. Darragh. 2002. “Development of Regional Hard Rock Attenuation Relations for Central and Eastern North America.” Pacific Engineering; Analysis.

Simpson, K. A. 1996. “Attenuation of Strong Ground-Motion Incorporating Near-Surface Foundation Conditions.” PhD thesis, University of London.

Singh, R. P., A. Aman, and Y. J. J. Prasad. 1996. “Attenuation Relations for Strong Seismic Ground Motion in the Himalayan Region.” Pure and Applied Geophysics 147 (1): 161–80.

Singh, S. K., B. K. Bansal, S. N. Bhattacharya, J. F. Pacheco, R. S. Dattatrayam, M. Ordaz, G. Suresh, Kamal, and S. E. Hough. 2003. “Estimation of Ground Motion for Bhuj (26 January 2001; \(M_w 7.6\)) and for Future Earthquakes in India.” Bulletin of the Seismological Society of America 93 (1): 353–70.

Singh, S. K., C. Gutierreez, J. Arboleda, and M. Ordaz. 1993. “Peligro Sı́smico En El Salvador.” Universidad Nacional Autónoma de México, México.

Singh, S. K., E. Mena, R. Castro, and C. Carmona. 1987. “Empirical Prediction of Ground Motion in Mexico City from Coastal Earthquakes.” Bulletin of the Seismological Society of America 77 (5): 1862–7.

Skarlatoudis, A. A. 2017. “Applicability of Ground-Motion Prediction Equations to a Greek Within-Slab Earthquake Dataset.” Bulletin of Earthquake Engineering 15 (10): 3987–4008. https://doi.org/10.1007/s10518-017-0140-8.

Skarlatoudis, A. A., C. B. Papazachos, B. N. Margaris, N. Theodulidis, C. Papaioannou, I. Kalogeras, E. M. Scordilis, and V. Karakostas. 2003. “Empirical Peak Ground-Motion Predictive Relations for Shallow Earthquake in Greece.” Bulletin of the Seismological Society of America 93 (6): 2591–2603.

Skarlatoudis, A. A., C. B. Papazachos, B. N. Margaris, C. Ventouzi, I. Kalogeras, and the EGELADOS Group. 2013. “Ground-Motion Prediction Equations of Intermediate-Depth Earthquakes in the Hellenic Arc, Southern Aegean Subduction Area.” Bulletin of the Seismological Society of America 103 (June): 1952–68. https://doi.org/10.1785/0120120265.

Skarlatoudis, A., N. Theodulidis, C. Papaioannou, and Z. Roumelioti. 2004. “The Dependence of Peak Horizontal Acceleration on Magnitude and Distance for Small Magnitude Earthquakes in Greece.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Slejko, D., Z. Javakhishvili, A. Rebez, M. Santulin, M. Elashvili, P. L. Bragato, T. Godoladze, and J. Garcia. 2008. “Seismic Hazard Assessment for the Tbilisi Test Area (Eastern Georgia).” Bollettino Di Geofisica Teorica Ed Applicata 49 (1): 37–57.

Smit, P. 1998. “Strong Motion Attenuation Model for Central Europe.” In Proceedings of Eleventh European Conference on Earthquake Engineering.

———. 2000. Personal communication 4/12/2000.

Smit, P., V. Arzoumanian, Z. Javakhishvili, S. Arefiev, D. Mayer-Rosa, S. Balassanian, and T. Chelidze. 2000. “The Digital Accelerograph Network in the Caucasus.” In Earthquake Hazard and Seismic Risk Reduction — Advances in Natural and Technological Hazards Research, edited by S. Balassanian. Kluwer Academic Publishers.

Snæbjörnsson, J. T., and R. Sigbjörnsson. 2008. “The Duration Characteristics of Earthquake Ground Motions.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Sobhaninejad, G., A. Noorzad, and A. Ansari. 2007. “Genetic Algorithm (GA): A New Approach in Estimating Strong Ground Motion Attenuation Relations.” In Proceedings of the Fourth International Conference on Earthquake Geotechnical Engineering.

Soghrat, M. R., and M. Ziyaeifar. 2017. “Ground Motion Prediction Equations for Horizontal and Vertical Components of Acceleration in Northern Iran.” Journal of Seismology 21 (1): 99–125. https://doi.org/10.1007/s10950-016-9586-4.

Sokolov, V. 1997. “Empirical Models for Estimating Fourier-Amplitude Spectra of Ground Acceleration in the Northern Caucasus (Racha Seismogenic Zone).” Bulletin of the Seismological Society of America 87 (6): 1401–12.

Sokolov, V., K.-P. Bonjer, M. Oncescu, and M. Rizescu. 2005. “Hard Rock Spectral Models for Intermediate-Depth Vrancea, Romania, Earthquakes.” Bulletin of the Seismological Society of America 95 (5): 1749–65. https://doi.org/10.1785/0120050005.

Sokolov, V., K.-P. Bonjer, F. Wenzel, B. Grecu, and M. Radulian. 2008. “Ground-Motion Prediction Equations for the Intermediate Depth Vrancea (Romania) Earthquakes.” Bulletin of Earthquake Engineering 6: 367–88.

Sokolov, V., R. Kiuchi, W. D. Mooney, and H. M. Zahran. 2021. “Regional Ground-Motion Prediction Equations for Western Saudi Arabia: Merging Stochastic and Empirical Estimates.” Bulletin of Earthquake Engineering 19: 1663–86. https://doi.org/10.1007/s10518-021-01048-6.

Sokolov, V., C.-H. Loh, and K.-L. Wen. 2000. “Empirical Model for Estimating Fourier Amplitude Spectra of Ground Acceleration in Taiwan Region.” Earthquake Engineering and Structural Dynamics 29 (3): 339–57.

Sokolov, V., F. Wenzel, W.-Y. Jean, and K.-L. Wen. 2010. “Uncertainty and Spatial Correlation of Earthquake Ground Motion in Taiwan.” Terrestrial Atmospheric and Oceanic Science 21 (6): 905–21. https://doi.org/10.3319/TAO.2010.05.03.01(T).

Sokolov, V. Y. 1998. “Spectral Parameters of the Ground Motions in Caucasian Seismogenic Zones.” Bulletin of the Seismological Society of America 88 (6): 1438–44.

Sokolov, V., and H. M. Zahran. 2018. “Generation of Stochastic Earthquake Ground Motion in Western Saudi Arabia as a First Step in Development of Regional Ground Motion Prediction Model.” Arabian Journal of Geosciences 11 (38). https://doi.org/10.1007/s12517-018-3394-9.

Somerville, P., N. Collins, N. Abrahamson, R. Graves, and C. Saikia. 2001. “Ground Motion Attenuation Relations for the Central and Eastern United States.”

Somerville, P. G. 1998. “Development of an Improved Representation of Near Fault Ground Motions.” In Proceedings of the SMIP98 Seminar on Utilization of Strong Motion Data, 1–20.

Somerville, P. G., R. W. Graves, N. F. Collins, S. G. Song, and S. Ni. 2009. “Ground Motion Models for Australian Earthquakes.” Report to Geoscience Australia.

Somerville, P., R. Graves, N. Collins, S. G. Song, S. Ni, and P. Cummins. 2009. “Source and Ground Motion Models of Australian Earthquakes.” In Proceedings of the 2009 Annual Conference of the Australian Earthquake Engineering Society.

Souriau, A. 2006. “Quantifying Felt Events: A Joint Analysis of Intensities, Accelerations and Dominant Frequencies.” Journal of Seismology 10 (1): 23–38. https://doi.org/10.1007/s10950-006-2843-1.

Spudich, P., and D. M. Boore. 2005. “Erratum: SEA99: A Revised Ground-Motion Prediction Relation for Use in Extensional Tectonic Regimes.” Bulletin of the Seismological Society of America 95 (3): 1209. https://doi.org/10.1785/0120050026.

Spudich, P., J. B. Fletcher, M. Hellweg, J. Boatwright, C. Sullivan, W. B. Joyner, T. C. Hanks, et al. 1997. “SEA96 — A New Predictive Relation for Earthquake Ground Motions in Extensional Tectonic Regimes.” Seismological Research Letters 68 (1): 190–98.

Spudich, P., J. Fletcher, M. Hellweg, J. Boatwright, C. Sullivan, W. Joyner, T. Hanks, et al. 1996. “Earthquake Ground Motions in Extensional Tectonic Regimes.” Open-File Report 96-292. U.S. Geological Survey.

Spudich, P., W. B. Joyner, A. G. Lindh, D. M. Boore, B. M. Margaris, and J. B. Fletcher. 1999. “SEA99: A Revised Ground Motion Prediction Relation for Use in Extensional Tectonic Regimes.” Bulletin of the Seismological Society of America 89 (5): 1156–70.

Srinivasan, C., M. L. Sharma, J. Kotadia, and Y. A. Willy. 2008. “Peak Ground Horizontal Acceleration Attenuation Relationship for Low Magnitudes at Short Distances in South Indian Region.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Stafford, P., J. Berrill, and J. Pettinga. 2006. “New Empirical Predictive Equations for the Fourier Amplitude Spectrum of Acceleration and Arias Intensity in New Zealand.” In Proceedings of First European Conference on Earthquake Engineering and Seismology (a Joint Event of the 13th ECEE & 30th General Assembly of the ESC.

Stafford, P. J. 2014. “Crossed and Nested Mixed-Effects Approaches for Enhanced Model Development and Removal of the Ergodic Assumption in Empirical Ground-Motion Models.” Bulletin of the Seismological Society of America 104 (2): 702–19. https://doi.org/10.1785/0120130145.

———. 2006. “Engineering Seismological Studies and Seismic Design Criteria for the Buller Region, South Island, New Zealand.” PhD thesis, University of Canterbury, Christchurch, New Zealand.

———. 2019. “Continuous Integration of Data into Ground-Motion Models Using Bayesian Updating.” Journal of Seismology 23 (1): 39–57. https://doi.org/10.1007/s10950-018-9792-3.

Stafford, P. J., J. B. Berrill, and J. R. Pettinga. 2009. “New Predictive Equations for Arias Intensity from Crustal Earthquakes in New Zealand.” Journal of Seismology 13 (1): 31–52. https://doi.org/10.1007/s10950-008-9114-2.

Stamatovska, S. 2002. “A New Azimuth Dependent Empirical Strong Motion Model for Vranchea Subduction Zone.” In Proceedings of Twelfth European Conference on Earthquake Engineering.

Stamatovska, S., and D. Petrovski. 1996. “Empirical Attenuation Acceleration Laws for Vrancea Intermediate Earthquakes.” In Proceedings of Eleventh World Conference on Earthquake Engineering.

———. 1991. “Ground Motion Parameters Based on Data Obtained from Strong Earthquake Records.” In National Progress Report of Yugoslavia, UNDP/UNESCO Project Rep/88/004, Task Group 3, Second Meeting. Zagreb, Yugoslavia: Geophysical Institute.

Steinberg, V. V., M. V. Saks, F. F. Aptikaev, and others. 1993. “Methods of Seismic Ground Motion Estimation (Handbook).” In Voprosy Inzhenernoi Seismologii. Iss. 34. Nauka, 5–97.

Stewart, J. P., D. M. Boore, E. Seyhan, and G. M. Atkinson. 2016. “NGA-West 2 Equations for Predicting Vertical Component PGA, PGV, and 5%-Damped PSA from Shallow Crustal Earthquakes.” Earthquake Spectra 32 (2): 1005–31. https://doi.org/10.1193/072114EQS116M.

Stewart, J. P., J. Douglas, M. Javanbarg, N. A. Abrahamson, Y. Bozorgnia, D. M. Boore, K. W. Campbell, E. Delavaud, M. Erdik, and P. J. Stafford. 2015. “Selection of Ground Motion Prediction Equations for the Global Earthquake Model.” Earthquake Spectra 31 (1): 19–45. https://doi.org/10.1193/013013EQS017M.

Sun, F., and K. Peng. 1993. “Attenuation of Strong Ground Motion in Western U.S.A.” Earthquake Research in China 7 (1): 119–31.

Sung, C.-H., N. A. Abrahamson, and J.-Y. Huang. 2021. “Conditional Ground-Motion Models for Horizontal Peak Ground Displacement for Active Crustal Regions.” Bulletin of the Seismological Society of America 111 (3): 1542–62. https://doi.org/10.1785/0120200299.

Sung, C.-H., and C.-T. Lee. 2019. “Improvement of the Quantification of Epistemic Uncertainty Using Single-Station Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 109 (4): 1358–77. https://doi.org/10.1785/0120180044.

———. 2016. “A New Methodology for Quantification of the Systematic Path Effects on Ground-Motion Variability.” Bulletin of the Seismological Society of America 106 (6): 2796–2810. https://doi.org/10.1785/0120160038.

Sunuwar, L., C. Cuadra, and M. B. Karkee. 2004. “Strong Ground Motion Attenuation in the Sea of Japan (Okhotsk-Amur Plates Boundary) Region.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Szeliga, W., S. Hough, S. Martin, and R. Bilham. 2010. “Intensity, Magnitude, Location, and Attenuation in India for Felt Earthquakes Since 1762.” Bulletin of the Seismological Society of America 100 (2): 570–84. https://doi.org/10.1785/0120080329.

Sørensen, M. B., D. Stromeyer, and G. Grünthal. 2009. “Attenuation of Macroseismic Intensity: A New Relation for the Marmara Sea Region, Northwest Turkey.” Bulletin of the Seismological Society of America 99 (2A): 538–53. https://doi.org/10.1785/0120080299.

———. 2010a. “A Macroseismic Intensity Prediction Equation for Intermediate Depth Earthquakes in the Vrancea Region, Romania.” Soil Dynamics and Earthquake Engineering 30 (11): 1268–78. https://doi.org/10.1016/j.soildyn.2010.05.009.

———. 2010b. “Intensity Attenuation in the Campania Region, Southern Italy.” Journal of Seismology 14: 209–23. https://doi.org/10.1007/s10950-009-9162-2.

Takahashi, T., A. Asano, Y. Ono, H. Ogawa, J. X. Zhao, J. Zhang, Y. Fukushima, et al. 2005. “Attenuation Relations of Strong Motion in Japan Using Site Classification Based on Predominant Period.” In 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18).

Takahashi, T., A. Asano, T. Saiki, H. Okada, K. Irikura, J. X. Zhao, J. Zhang, et al. 2004. “Attenuation Models for Response Spectra Derived from Japanese Strong-Motion Records Accounting for Tectonic Source Types.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Takahashi, T., S. Kobayashi, Y. Fukushima, J. X. Zhao, H. Nakamura, and P. G. Somerville. 2000. “A Spectral Attenuation Model for Japan Using Strong Motion Data Base.” In Proceedings of the Sixth International Conference on Seismic Zonation.

Tamura, K., Y. Sasaki, and K. Aizawa. 1990. “Attenuation Characteristics of Ground Motions in the Period Range of \(2\) to \(20\) Seconds — for Application to the Seismic Design of Long-Period Structures.” In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, 1:495–504.

Tang, Y., N. Lam, H.-H. Tsang, and E. Lumantarna. 2020. “An Adaptive Ground Motion Prediction Equation for Use in Low-to-Moderate Seismicity Regions.” Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2020.1784810.

Tang, Y., N. Lam, H-H. Tsang, and E. Lumantarna. 2019. “Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model.” Geosciences 9 (422). https://doi.org/10.3390/geosciences9100422.

Tanner, J. G., and K. M. Shedlock. 2004. “Seismic Hazard Maps of Mexico, the Caribbean, and Central and South America.” Tectonophysics 390 (1–4): 159–75.

Tao, Z., X. Tao, and A. Cui. 2016. “Strong Motion PGA Prediction for Southwestern China from Small Earthquake Records.” Natural Hazards and Earth System Sciences 16: 1145–55. https://doi.org/10.5194/nhess-16-1145-2016.

Tapia, M. 2006. “Desarrollo Y Aplicación de Métodos Avanzados Para La Caracterización de La Respuesta Sı́smica Del Suelo a Escala Regional Y Local.” PhD thesis, Universidad Politécnica de Catalunya, Barcelona, Spain.

Tapia, M., T. Susagna, and X. Goula. 2007. “Curvas Predictivas Del Movimiento Del Suelo En El Oeste Del Mediterráneo.” In Asociación Espaõla de Ingeniería Sísmica. Girona, Spain.

Tavakoli, B., and S. Pezeshk. 2005. “Empirical-Stochastic Ground-Motion Prediction for Eastern North America.” Bulletin of the Seismological Society of America 95 (6): 2283–96. https://doi.org/10.1785/0120050030.

———. 2007. “A New Approach to Estimate a Mixed Model-Based Ground Motion Prediction Equation.” Earthquake Spectra 23 (3): 665–84. https://doi.org/10.1193/1.2755934.

Taylor Castillo, W., P. Santos Lopez, A. Dahle, and H. Bungum. 1992. “Digitization of Strong Motion Data and Estimation of PGA Attenuation.” NORSAR, Kjeller, Norway.

Tejeda-Jácome, J., and F. J. Chávez-Garcı́a. 2007. “Empirical Ground-Motion Estimation Equations in Colima from Weak Motion Records.” ISET Journal of Earthquake Technology 44 (3–4): 409–20.

Tento, A., L. Franceschina, and A. Marcellini. 1992. “Expected Ground Motion Evaluation for Italian Sites.” In Proceedings of Tenth World Conference on Earthquake Engineering, 1:489–94.

TERA Corporation. 1980. “Evaluation of Peak Horizontal Ground Acceleration Associated with the Offshore Zone of Deformation at San Onofre Nuclear Generating Station.” TERA Corporation, Berkeley, California, USA.

Tezcan, J., and Q. Cheng. 2012. “Support Vector Regression for Estimating Earthquake Response Spectra.” Bulletin of Earthquake Engineering 10 (4): 1205–19. https://doi.org/10.1007/s10518-012-9350-2.

Tezcan, J., Y. Dak Hazirbaba, and Q. Cheng. 2018. “A Kernel-Based Mixed Effect Regression Model for Earthquake Ground Motions.” Advances in Engineering Software 120 (June): 26–35. https://doi.org/10.1016/j.advengsoft.2016.06.002.

Thenhaus, P. C., S. T. Algermissen, D. M. Perkins, S. L. Hanson, and W. H. Diment. 1989. “Probabilistic Estimates of the Seismic Ground-Motion Hazard in Western Saudi Arabia.” Bulletin 1868. U.S. Geological Survey.

Theodulidis, N., V. Lekidis, B. Margaris, C. Papazachos, C. Papaioannou, and P. Dimitriu. 1998. “Seismic Hazard Assessment and Design Spectra for the Kozani-Grevena Region (Greece) After the Earthquake of May 13, 1995.” Journal of Geodynamics 26 (2–4): 375–91.

Theodulidis, N. P. 1998. “Peak Ground Acceleration Attenuation of Small Earthquakes: Analysis of Euroseistest (Greece) Data.” In Proceedings of the Second International Symposium on The Effects of Surface Geology on Seismic Motion: Recent Progress and New Horizon on ESG Study, 1171–6.

Theodulidis, N. P., and B. C. Papazachos. 1992. “Dependence of Strong Ground Motion on Magnitude-Distance, Site Geology and Macroseismic Intensity for Shallow Earthquakes in Greece: I, Peak Horizontal Acceleration, Velocity and Displacement.” Soil Dynamics and Earthquake Engineering 11: 387–402.

———. 1994. “Dependence of Strong Ground Motion on Magnitude-Distance, Site Geology and Macroseismic Intensity for Shallow Earthquakes in Greece: II Horizontal Pseudovelocity.” Soil Dynamics and Earthquake Engineering 13 (5): 317–43.

Thomas, S., G. N. Pillai, and K. Pal. 2016. “Prediction of Peak Ground Acceleration Using \(\epsilon\)-SVR, \(\nu\)-SVR and Ls-SVR Algorithm.” Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2016.1176604.

Thomas, S., G. N. Pillai, K. Pal, and P. Jagtap. 2016. “Prediction of Ground Motion Parameters Using Randomized ANFIS (RANFIS).” Applied Soft Computing 40 (March): 624–34. https://doi.org/10.1016/j.asoc.2015.12.013.

Tong, H., and T. Katayama. 1988. “Peak Acceleration Attenuation by Eliminating the Ill-Effect of the Correlation Between Magnitude and Epicentral Distance.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:349–54.

Toro, G. R. 2002. “Modification of the Toro et Al. (1997) Attenuation Equations for Large Magnitudes and Short Distances.” Risk Engineering.

Toro, G. R., N. A. Abrahamson, and J. F. Schneider. 1997. “Model of Strong Ground Motions from Earthquake in Central and Eastern North America: Best Estimates and Uncertainties.” Seismological Research Letters 68 (1): 41–57.

Toro, G. R., and R. K. McGuire. 1987. “An Investigation into Earthquake Ground Motion Characteristics in Eastern North America.” Bulletin of the Seismological Society of America 77 (2): 468–89.

Toro, G. R., and W. J. Silva. 2001. “Scenario Earthquakes for Saint Louis, MO, and Memphis, TN, and Seismic Hazard Maps for the Central United States Region Including the Effect of Site Conditions.”

Travasarou, T., J. D. Bray, and N. A. Abrahamson. 2003. “Empirical Attenuation Relationship for Arias Intensity.” Earthquake Engineering and Structural Dynamics 32: 1133–55. https://doi.org/10.1002/eqe.270.

Trifunac, M. D. 1977. “Forecasting the Spectral Amplitudes of Strong Earthquake Ground Motion.” In Proceedings of Sixth World Conference on Earthquake Engineering, I:139–52.

———. 1980. “Effects of Site Geology on Amplitudes of Strong Motion.” In Proceedings of Seventh World Conference on Earthquake Engineering, 2:145–52.

———. 1976a. “Preliminary Analysis of the Peaks of Strong Earthquake Ground Motion – Dependence of Peaks on Earthquake Magnitude, Epicentral Distance, and Recording Site Conditions.” Bulletin of the Seismological Society of America 66 (1): 189–219.

———. 1976b. “Preliminary Empirical Model for Scaling Fourier Amplitude Spectra of Strong Ground Acceleration in Terms of Earthquake Magnitude, Source-to-Station Distance, and Recording Site Conditions.” Bulletin of the Seismological Society of America 66 (4): 1343–73.

———. 1978. “Response Spectra of Earthquake Ground Motions.” Journal of the Engineering Mechanics Division, ASCE 104 (EM5): 1081–97.

Trifunac, M. D., and J. G. Anderson. 1977. “Preliminary Empirical Models for Scaling Absolute Acceleration Spectra.” 77-03. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

———. 1978a. “Preliminary Empirical Models for Scaling Pseudo Relative Velocity Spectra.” 78-04. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

———. 1978b. “Preliminary Empirical Models for Scaling Relative Velocity Spectra.” 78-05. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

Trifunac, M. D., and A. G. Brady. 1975a. “On the Correlation of Peak Acceleration of Strong Motion with Earthquake Magnitude, Epicentral Distance and Site Conditions.” In Proceedings of the U.S. National Conference on Earthquake Engineering, 43–52.

———. 1976. “Correlations of Peak Acceleration, Velocity and Displacement with Earthquake Magnitude, Distance and Site Conditions.” Earthquake Engineering and Structural Dynamics 4 (5): 455–71.

———. 1975b. “A Study on the Duration of Strong Earthquake Ground Motion.” Bulletin of the Seismological Society of America 65 (3): 581–626.

Trifunac, M. D., and V. W. Lee. 1978. “Dependence of the Fourier Amplitude Spectra of Strong Motion Acceleration on Depth of Sedimentary Deposits.” 78-14. Department of Civil Engineering, University of Southern California, Los Angeles, California, USA.

———. 1979. “Dependence of Pseudo Relative Velocity Spectra of Strong Motion Acceleration on Depth of Sedimentary Deposits.” 79-02. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

———. 1985a. “Preliminary Empirical Model for Scaling Fourier Amplitude Spectra of Strong Ground Acceleration in Terms of Earthquake Magnitude, Source to Station Distance, Site Intensity and Recording Site Conditions.” 85-03. Department of Civil Engineering, University of Southern California, Los Angeles, California, USA.

———. 1985b. “Preliminary Empirical Model for Scaling Pseudo Relative Velocity Spectra of Strong Earthquake Acceleration in Terms of Magnitude, Distance, Site Intensity and Recording Site Condition.” 85-04. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

———. 1989. “Empirical Models for Scaling Pseudo Relative Velocity Spectra of Strong Earthquake Accelerations in Terms of Magnitude, Distance, Site Intensity and Recording Site Conditions.” Soil Dynamics and Earthquake Engineering 8 (3): 126–44.

Tromans, I. 2004. “Behaviour of Buried Water Supply Pipelines in Earthquake Zones.” PhD thesis, University of London.

Tromans, I. J., and J. J. Bommer. 2002. “The Attenuation of Strong-Motion Peaks in Europe.” In Proceedings of Twelfth European Conference on Earthquake Engineering.

Tsai, C.-C. P., Y.-H. Chen, and C.-H. Liu. 2006. “The Path Effect in Ground-Motion Variability: An Application of the Variance-Components Technique.” Bulletin of the Seismological Society of America 96 (3): 1170–6. https://doi.org/10.1785/0120050155.

Tsai, Y. B., F. W. Brady, and L. S. Cluff. 1990. “An Integrated Approach for Characterization of Ground Motions in PG&E’s Long Term Seismic Program for Diablo Canyon.” In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, 1:597–606.

Tselentis, G.-A., L. Danciu, and F. Gkika. 2005. “Empirical Arias Intensity Attenuation Relationships for Seismic Hazard Analysis of Greece.” In Earthquake Resistant Engineering Structures V, edited by C. A. Brebbia, D. E. Beskos, G. D. Manolis, and C. C. Spyrakos. WIT Press. https://doi.org/10.2495/ERES050041.

Tsereteli, N., A. Askan, and H. Hamzehloo. 2016. “Hybrid-Empirical Ground Motion Estimations for Georgia.” Acta Geophysica 64 (5): 1225–56. https://doi.org/10.1515/acgeo-2016-0048.

Tuluka, M. 2007. “An Estimate of the Attenuation Relationship for Strong Ground Motion in the Kivu Province, Western Rift Valley of Africa.” Physics of the Earth and Planetary Interiors 162: 13–21.

Tusa, G., and H. Langer. 2016. “Prediction of Ground Motion Parameters for the Volcanic Area of Mount Etna.” Journal of Seismology 20 (1): 1–42. https://doi.org/10.1007/s10950-015-9508-x.

Tusa, G., H. Langer, and R. Azzaro. 2020. “Localizing Ground-Motion Models in Volcanic Terranes: Shallow Events at Mt. Etna, Italy, Revisited.” Bulletin of the Seismological Society of America 110 (6): 2843–61. https://doi.org/10.1785/0120190325.

Twesigomwe, E. 1997. “Probabilistic Seismic Hazard Assessment of Uganda.” PhD thesis, Department of Physics, Makarere University, Uganda.

Uchiyama, Y., and S. Midorikawa. 2006. “Attenuation Relationship for Response Spectra on Engineering Bed Rock Considering Effects of Focal Depth.” Journal of Structural and Construction Engineering, Architectural Institute of Japan 606: 81–88.

Ullah, S., D. Bindi, M. Pilz, L. Danciu, G. Weatherill, E. Zuccolo, A. Ischuk, N. N. Mikhailova, K. Abdrakhmatov, and S. Parolai. 2015. “Probabilistic Seismic Hazard Assessment for Central Asia.” Annals of Geophysics 58 (1): S0103. https://doi.org/10.4401/ag-6687.

Ulusay, R., E. Tuncay, H. Sonmez, and C. Gokceoglu. 2004. “An Attenuation Relationship Based on Turkish Strong Motion Data and Iso-Acceleration Map of Turkey.” Engineering Geology 74 (3-4): 265–91.

Ulutaş, E., and M. F. Özer. 2003. “Attenuation Relationship for Estimation of Peak Ground Horizontal Acceleration in Eastern Marmara Region of Turkey.” In EGS-Agu-Eug Joint Assembly. Nice, France.

———. 2010. “Empirical Attenuation Relationship of Peak Ground Acceleration for Eastern Marmara Region in Turkey.” The Arabian Journal for Science and Engineering 35 (1A): 187–203.

Vacareanu, R., S. Demetriu, D. Lungu, F. Pavel, C. Arion, M. Iancovici, A. Aldea, and C. Neagu. 2014. “Empirical Ground Motion Model for Vrancea Intermediate-Depth Seismic Source.” Earthquakes and Structures 6 (2): 141–61. https://doi.org/10.12989/eas.2014.6.2.141.

Vacareanu, R., M. Iancovici, C. Neagu, and F. Pavel. 2015. “Macroseismic Intensity Prediction Equations for Vrancea Intermediate-Depth Seismic Source.” Natural Hazards 79 (3): 2005–31. https://doi.org/10.1007/s11069-015-1944-y.

Vacareanu, R., M. Radulian, M. Iancovici, F. Pavel, and C. Neagu. 2015. “Fore-Arc and Back-Arc Ground Motion Prediction Model for Vrancea Intermediate Depth Seismic Source.” Journal of Earthquake Engineering 19 (3): 535–62. https://doi.org/10.1080/13632469.2014.990653.

Villalobos-Escobar, G. P., and R. R. Castro. 2013. “Empirical Ground-Motion Relations Using Moderate Earthquakes Recorded in Medellı́n-Aburrá Valley (Colombia) Strong-Motion Networks.” Bulletin of Earthquake Engineering 11: 863–84. https://doi.org/10.1007/s10518-012-9408-1.

Vives, V., and J. A. Canas. 1992. “Anelastic Attenuation and Pseudoacceleration Relations in Eastern Iberia.” In Proceedings of Tenth World Conference on Earthquake Engineering, 1:299–304.

Vuorinen, T., T. Tiira, and B. Lund. 2015. “New Fennoscandian Shield Empirical Ground Motion Characterization Models.” In EGU General Assembly, Geophysical Research Abstracts. Vol. 17.

Wald, D. J., and T. I. Allen. 2007. “Topographic Slope as a Proxy for Seismic Site Conditions and Amplification.” Bulletin of the Seismological Society of America 97 (5): 1379–95. https://doi.org/10.1785/0120060267.

Wald, D. J., B. C. Worden, V. Quitoriano, and K. L. Pankow. 2005. “ShakeMap 4pt Manual.” Technical Manual, users guide, and computer software guide Version 1.0. USGS Techniques; Methods 12-A1. http://pubs.usgs.gov/tm/2005/12A01/.

Walling, M., W. Silva, and N. Abrahamson. 2008. “Nonlinear Site Amplification Factors for Constraining the NGA Models.” Earthquake Spectra 24 (1): 243–55. https://doi.org/10.1193/1.2934350.

Wan Ahmad, S., A. Adnan, R. Mohd Noor, K. Muthusamy, S. M. S. Razak, A. Taib, and M. Z. A. Mohd Zahid. 2015. “Attenuation Function Relationship for Far Field Earthquake Considered by Strike Slip Mechanism.” Applied Mechanics and Materials 754–755: 897–901. https://doi.org/10.4028/www.scientific.net/AMM.754-755.897.

Wang, B.-Q., F. T. Wu, and Y.-J. Bian. 1999. “Attenuation Characteristics of Peak Acceleration in North China and Comparison with Those in the Eastern Part of North America.” Acta Seismologica Sinica 12 (1): 26–34. https://doi.org/10.1007/s11589-999-0004-7.

Wang, G.-Q., D. M. Boore, H. Igel, and X.-Y. Zhou. 2004. “Comparisons of Ground Motions from Five Aftershocks of the 1999 Chi-Chi, Taiwan, Earthquake with Empirical Predictions Largely Based on Data from California.” Bulletin of the Seismological Society of America 94 (6): 2198–2212.

Wang, G., and X. Tao. 2000. “A New Two-Stage Procedure for Fitting Attenuation Relationship of Strong Ground Motion.” In Proceedings of the Sixth International Conference on Seismic Zonation.

Wang, H., Y. Ren, and R. Wen. 2018. “Source Parameters, Path Attenuation and Site Effects from Strong-Motion Recordings of the Wenchuan Aftershocks (2008-2013) Using a Nonparametric Generalized Inversion Technique.” Geophysical Journal International 212 (2): 872–90. https://doi.org/10.1093/gji/ggx447.

Wang, M., and T. Takada. 2009. “A Bayesian Framework for Prediction of Seismic Ground Motion.” Bulletin of the Seismological Society of America 99 (4): 2348–64. https://doi.org/10.1785/0120080017.

Wang, S. Y., and others. 2000. “Development of Attenuation Relations for Ground Motion in China.” Earthquake Research in China 16: 99–106.

Wang, Y.-J., Y.-T. Lee, K.-F. Ma, and Y.-C. Wu. 2016. “New Attenuation Relationship for Peak Ground and Pseudo-Spectral Acceleration of Normal-Faulting Earthquakes in Offshore Northeast Taiwan.” Terrestrial Atmospheric and Oceanic Science 27 (1): 43–58. https://doi.org/10.3319/TAO.2015.08.17.01(T).

Weatherill, G., and F. Cotton. 2020. “A Ground Motion Logic Tree for Seismic Hazard Analysis in the Stable Cratonic Region of Europe: Regionalisation, Model Selection and Development of a Scaled Backbone Approach.” Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-020-00940-x.

Weatherill, G., S. R. Kotha, and F. Cotton. 2020. “A Regionally-Adaptable ‘Scaled Backbone’ Ground Motion Logic Tree for Shallow Seismicity in Europe: Application to the 2020 European Seismic Hazard Model.” Bulletin of Earthquake Engineering 18: 5087–5117. https://doi.org/10.1007/s10518-020-00899-9.

Weisburg, S. 1985. Applied Linear Regression. 2nd ed. John Wiley & Sons.

Wells, D. L., and K. J. Coppersmith. 1994. “New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement.” Bulletin of the Seismological Society of America 84 (4): 974–1002.

Wen, R., P. Xu, H. Wang, and Y. Ren. 2018. “Single-Station Standard Deviation Using Strong-Motion Data from Sichuan Region, China.” Bulletin of the Seismological Society of America 108 (4): 2237–47. https://doi.org/10.1785/0120170276.

Wiggins, J. H., Jr. 1964. “Construction of Strong Motion Response Spectra from Magnitude and Distance Data.” Bulletin of the Seismological Society of America 54 (5): 1257–69.

Wills, C. J., M. Petersen, W. A. Bryant, M. Reichle, G. J. Saucedo, S. Tan, G. Taylor, and J. Treiman. 2000. “A Site-Conditions Map for California Based on Geology and Shear-Wave Velocity.” Bulletin of the Seismological Society of America 90 (6B): S187–S208.

Wilson, R. C., and D. K. Keefer. 1985. “Predicting Areal Limits of Earthquake-Induced Landsliding.” In Evaluating Earthquake Hazards in the Los Angeles Region; an Earth-Science Perspective, 317–45. Professional Paper 1360. US Geological Survey.

Winter, P. W. 1995. “A Stochastic Ground Motion Model for UK Earthquakes.” GNSR(DTI)/P(96)275 Milestone ECS 0263, AEA/16423530/R003. AEA Technology.

Wiszniowski, J. 2019. “Estimation of a Ground Motion Model for Induced Events by Fahlman’s Cascade Correlation Neural Network.” Computers and Geosciences 131: 23–31. https://doi.org/10.1016/j.cageo.2019.06.006.

Wong, I. G., W. J. Silva, R. Darragh, N. Gregor, and M. Dober. 2015. “A Ground Motion Prediction Model for Deep Earthquakes Beneath the Island of Hawaii.” Earthquake Spectra 31 (3): 1763–88. https://doi.org/10.1193/012012EQS015M.

Wong, I. G., W. J. Silva, R. R. Youngs, and C. L. Stark. 1996. “Numerical Earthquake Ground Motion Modeling and Its Use in Microzonation.” In Proceedings of Eleventh World Conference on Earthquake Engineering.

Woo, G. 1985. “Seismic Ground Motions in Great Britain.” In Earthquake Engineering in Britain. Institution of Civil Engineers.

Wu, Y.-M., T.-C. Shin, and C.-H. Chang. 2001. “Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake.” Bulletin of the Seismological Society of America 91 (5): 1218–28.

Xiang, J., and D. Gao. 1994. “The Attenuation Law of Horizontal Peak Acceleration on the Rock Site in Yunnan Area.” Earthquake Research in China 8 (4): 509–16.

Xu, Y., J. P. Wang, Y.-M. Wu, and K.-C. Hao. 2019. “Prediction Models and Seismic Hazard Assessment: A Case Study from Taiwan.” Soil Dynamics and Earthquake Engineering 122: 94–106. https://doi.org/10.1016/j.soildyn.2019.03.038.

Xu, Z., X. Shen, and J. Hong. 1984. “Attenuation Relation of Ground Motion in Northern China.” In Proceedings of Eighth World Conference on Earthquake Engineering, II:335–42.

Yaghmaei-Sabegh, S. 2015. “New Models for Frequency Content Prediction of Earthquake Records Based on Iranian Ground-Motion Data.” Journal of Seismology 19 (4): 831–48. https://doi.org/10.1007/s10950-015-9497-9.

Yaghmaei-Sabegh, S. 2018. “Macroseismic Intensity Attenuation in Iran.” Earthquake Engineering and Engineering Vibration 17 (1): 139–48. https://doi.org/10.1007/s11803-018-0430-4.

Yaghmaei-Sabegh, S., Z. Shoghian, and M. N. Sheikh. 2014. “A New Model for the Prediction of Earthquake Ground-Motion Duration in Iran.” Natural Hazards 70 (1): 69–92. https://doi.org/10.1007/s11069-011-9990-6.

Yamabe, K., and K. Kanai. 1988. “An Empirical Formula on the Attenuation of the Maximum Acceleration of Earthquake Motions.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:337–42.

Yamazaki, F., K. Wakamatsu, J. Onishi, and K. T. Shabestari. 2000. “Relationship Between Geomorphological Land Classification and Site Amplification Ratio Based on JMA Strong Motion Records.” Soil Dynamics and Earthquake Engineering 19 (1): 41–53.

Yazdani, A., and M. Kowsari. 2013. “Earthquake Ground-Motion Prediction Equations for Northern Iran.” Natural Hazards 69 (3): 1877–94. https://doi.org/10.1007/s11069-013-0778-8.

Yazdani, A., M. Kowsari, and S. Amani. 2016. “Development of a Regional Attenuation Relationship for Alborz, Iran.” Journal of the Earth and Space Physics 41 (4): 39–50.

Yenier, E. 2015. “Regionally-Adjustable Generic Ground-Motion Prediction Equation.” PhD thesis, University of Western Ontario, Canada.

Yenier, E., and G. M. Atkinson. 2014. “Equivalent Point-Source Modeling of Moderate-to-Large Magnitude Earthquakes and Associated Ground-Motion Saturation Effects.” Bulletin of the Seismological Society of America 104 (3): 1458–78. https://doi.org/10.1785/0120130147.

———. 2015a. “An Equivalent Point-Source Model for Stochastic Simulation of Earthquake Ground Motions in California.” Bulletin of the Seismological Society of America 105 (3): 1435–55. https://doi.org/10.1785/0120140254.

———. 2015b. “Regionally Adjustable Generic Ground-Motion Prediction Equation Based on Equivalent Point-Source Simulations: Application to Central and Eastern North America.” Bulletin of the Seismological Society of America 105 (4): 1989–2009. https://doi.org/10.1785/0120140332.

Yerlikaya-Özkurt, F, A. Askan, and G.-W. Weber. 2014. “An Alternative Approach to the Ground Motion Prediction Problem by a Non-Parametric Adaptive Regression Method.” Engineering Optimization 46 (12): 1651–68. https://doi.org/10.1080/0305215X.2013.858141.

Yilmaz, S. 2011. “Ground Motion Predictive Modelling Based on Genetic Algorithms.” Natural Hazards and Earth System Sciences 11. https://doi.org/10.5194/nhess-11-2781-2011.

Yokota, H., K. Shiba, and K. Okada. 1988. “The Characteristics of Underground Earthquake Motions Observed in the Mud Stone Layer in Tokyo.” In Proceedings of Ninth World Conference on Earthquake Engineering, II:429–34.

Youngs, R. R., N. Abrahamson, F. I. Makdisi, and K. Sadigh. 1995. “Magnitude-Dependent Variance of Peak Ground Acceleration.” Bulletin of the Seismological Society of America 85 (4): 1161–76.

Youngs, R. R., S.-J. Chiou, W. J. Silva, and J. R. Humphrey. 1997. “Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes.” Seismological Research Letters 68 (1): 58–73.

Youngs, R. R., S. M. Day, and J. L. Stevens. 1988. “Near Field Ground Motions on Rock for Large Subduction Earthquakes.” In Proceedings of Earthquake Engineering & Soil Dynamics II, 445–62. Geotechnical Division, ASCE.

Yu, Y., and Y. Hu. 2004. “Empirical Long-Period Response Spectral Attenuation Relations Based on Southern California Digital Broad-Band Recordings.” In Proceedings of Thirteenth World Conference on Earthquake Engineering.

Yu, Y.-X., and S.-Y. Wang. 2004. “Attenuation Relations for Horizontal Peak Ground Acceleration and Response Spectrum in Northeastern Tibetan Plateau Region.” Acta Seismologica Sinica 17 (6): 651–61.

Yuen, K.-V., and H.-Q. Mu. 2011. “Peak Ground Acceleration Estimation by Linear and Nonlinear Models with Reduced Order Monte Carlo Simulation.” Computer-Aided Civil and Infrastructure Engineering 26: 30–47. https://doi.org/10.1111/j.1467-8667.2009.00648.x.

Yun, K.-H. 2006. “Recent Advances in Developing Site-Specific Ground Motion Attenuation Relations for the Nuclear Plant Sites in Korea.” In OECD NEA Specialists Meeting on the Seismic PSA of Nuclear Facilities. Jeju, Korea.

Yun, K.-H., and D.-H. Park. 2005. “Development of Site-Specific Ground-Motion Attenuation Relations in Korea —– Examples for the Nuclear Power Plant Sites.” In The 5th International Workshop on the Fundamental Research for Mitigating Earthquake Hazards.

Yuzawa, Y., and K. Kudo. 2008. “Empirical Estimation of Long-Period (\(1\)\(10\,\mathrm{sec.}\)) Earthquake Ground Motion on Hard Rocks.” In Proceedings of Fourteenth World Conference on Earthquake Engineering.

Zafarani, H., L. Luzi, G. Lanzano, and M. R. Soghrat. 2018. “Empirical Equations for the Prediction of PGA and Pseudo Spectral Accelerations Using Iranian Strong-Motion Data.” Journal of Seismology 22: 263–85. https://doi.org/10.1007/s10950-017-9704-y.

Zafarani, H., M. Mousavi, A. Noorzad, and A. Ansari. 2008. “Calibration of the Specific Barrier Model to Iranian Plateau Earthquakes and Development of Physically Based Attenuation Relationships for Iran.” Soil Dynamics and Earthquake Engineering 28 (7): 550–76. https://doi.org/10.1016/j.soildyn.2007.08.001.

Zafarani, H., S. Rahpeyma, and M. Mousavi. 2017. “Regional Adjustment Factors for Three NGA-West2 Ground-Motion Prediction Equations to Be Applicable in Northern Iran.” Journal of Seismology 21: 473–93. https://doi.org/10.1007/s10950-016-9611-7.

Zafarani, H., and M. Soghrat. 2012. “Simulation of Ground Motion in the Zagros Region of Iran Using the Specific Barrier Model and the Stochastic Method.” Bulletin of the Seismological Society of America 102 (5): 2031–45. https://doi.org/10.1785/0120110315.

Zalachoris, G., and E. M. Rathje. 2017. “Ground Motion Models for Earthquake Events in Texas, Oklahoma, and Kansas.” In 3rd International Conference on Performance-Based Design in Earthquake Geotechnical Engineering.

———. 2019. “Ground Motion Model for Small-to-Moderate Earthquakes in Texas, Oklahoma, and Kansas.” Earthquake Spectra 35 (1): 1–20. https://doi.org/10.1193/022618EQS047M.

Zandieh, A., S. Pezeshk, and K. W. Campbell. 2018. “An Equivalent Point-Source Stochastic Simulation of the NGA-West2 Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 108 (2): 815–35. https://doi.org/10.1785/0120170116.

Zare, M., and S. Sabzali. 2006. “Spectral Attenuation of Strong Motions in Iran.” In Proceedings of Third International Symposium on the Effects of Surface Geology on Seismic Motion, 1:749–58.

Zaré, M., and P.-Y. Bard. 2002. “Strong Motion Dataset of Turkey: Data Processing and Site Classification.” Soil Dynamics and Earthquake Engineering 22: 703–18.

Zaré, M., M. Ghafory-Ashtiany, and P.-Y. Bard. 1999. “Attenuation Law for the Strong-Motions in Iran.” In Proceedings of the Third International Conference on Seismology and Earthquake Engineering, Tehran, 1:345–54.

Zaré, M., and H. Memarian. 2003. “Macroseismic Intensity and Attenuation Laws: A Study on the Intensities of the Iranian Earthquakes of 1975–2000.” In Fourth International Conference of Earthquake Engineering and Seismology.

Zhang, P., Z.-X. Yang, H. K. Gupta, S. C. Bhatia, and K. M. Shedlock. 1999. “Global Seismic Hazard Assessment Program (GSHAP) in Continental Asia.” Annali Di Geofisica 42 (6): 1167–90.

Zhao, J. X. 2010. “Geometric Spreading Functions and Modeling of Volcanic Zones for Strong-Motion Attenuation Models Derived from Records in Japan.” Bulletin of the Seismological Society of America 100 (2): 712–32. https://doi.org/10.1785/0120090070.

Zhao, J. X., D. J. Dowrick, and G. H. McVerry. 1997. “Attenuation of Peak Ground Acceleration in New Zealand Earthquakes.” Bulletin of the New Zealand National Society for Earthquake Engineering 30 (2): 133–58.

Zhao, J. X., and M. C. Gerstenberger. 2010. “Ground-Motion Prediction Models for Post-Earthquake Rapid Reporting and Reliable Loss Modelling Using a Sparsely Distributed Recording Network in New Zealand.” Consultancy Report 2010/123. GNS Science, New Zealand.

Zhao, J. X., F. Jiang, P. Shi, H. Xing, H. Huang, R. Hou, Y. Zhang, et al. 2016. “Ground-Motion Prediction Equations for Subduction Slab Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions.” Bulletin of the Seismological Society of America 106 (4): 1535–51. https://doi.org/10.1785/0120150056.

Zhao, J. X., X. Liang, F. Jiang, H. Xing, M. Zhu, R. Hou, Y. Zhang, et al. 2016. “Ground-Motion Prediction Equations for Subduction Interface Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions.” Bulletin of the Seismological Society of America 106 (4): 1518–34. https://doi.org/10.1785/0120150034.

Zhao, J. X., J. Zhang, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi, H. Ogawa, et al. 2006. “Attenuation Relations of Strong Ground Motion in Japan Using Site Classification Based on Predominant Period.” Bulletin of the Seismological Society of America 96 (3): 898–913. https://doi.org/10.1785/0120050122.

Zhao, J. X., S. Zhou, P. Gao, T. Long, Y. Zhang, H. K. Thio, M. Lu, and D. A. Rhoades. 2015. “An Earthquake Classification Scheme Adapted for Japan Determined by the Goodness of Fit for Ground-Motion Prediction Equations.” Bulletin of the Seismological Society of America 105 (5): 2750–63. https://doi.org/10.1785/0120150013.

Zhao, J. X., S. Zhou, J. Zhou, C. Zhao, H. Zhang, Y. Zhang, P. Gao, et al. 2016. “Ground-Motion Prediction Equations for Shallow Crustal and Upper-Mantle Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions.” Bulletin of the Seismological Society of America 106 (4): 1552–69. https://doi.org/10.1785/0120150063.

Zhao, Y., and others. 2003. “An Attenuation Pattern of Surface Peak Acceleration in Yunnan Region.” Journal of Seismological Research 26 (3).

Zheng, S., and Y. L. Wong. 2004. “Seismic Ground Motion Relationships in Southern China Based on Stochastic Finite-Fault Model.” Earthquake Engineering and Engineering Vibration 3 (1): 11–21. https://doi.org/10.1007/BF02668847.

Zoback, M. L. 1992. “First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project.” Journal of Geophysical Research 97 (B8): 11703–28.

Zolfaghari, M. R., and A. Darzi. 2019a. “A Prediction Model for Vertical-to-Horizontal Ratios of PGA, PGV, and \(5\%\)-Damped Response Spectra (\(0.01\)–-\(10\,\mathrm{s}\)) for Iran.” Journal of Seismology 23 (4): 819–37. https://doi.org/10.1007/s10950-019-09836-z.

———. 2019b. “Ground-Motion Models for Predicting Vertical Components of PGA, PGV and \(5\%\) Damped Spectral Acceleration (\(0.01\)–-\(10\,\mathrm{s}\)) in Iran.” Bulletin of Earthquake Engineering 17 (7): 3615–35. https://doi.org/10.1007/s10518-019-00623-2.

Zonno, G., and V. Montaldo. 2002. “Analysis of Strong Ground Motions to Evaluate Regional Attenuation Relationships.” Annals of Geophysics 45 (3–4): 439–54.

Zuccolo, E., F. Bozzoni, and C. G. Lai. 2017. “Regional Low-Magnitude GMPE to Estimate Spectral Accelerations for Earthquake Early Warning Applications in Southern Italy.” Seismological Research Letters 88 (1): 61–71. https://doi.org/10.1785/0220160038.

. 1996. Zoning Map of China. Seismological Press, Beijing, China.


  1. Only those models using magnitude rather than epicentral intensity are listed.↩︎

  2. Note that a number of the models summarized in this report also provide coefficients for peak ground velocity (PGV).↩︎

  3. Generally GMPEs from technical reports and Ph.D. theses are only summarized if they have been cited in journal or conference articles.↩︎

  4. Reports coefficient of variation of \(0.942\) which could be the value of \(\sigma\) in terms of natural logarithms.↩︎

  5. Report coefficient of variation of \(0.877\) which could be the value of \(\sigma\) in terms of natural logarithms.↩︎

  6. From N. N. Ambraseys and Bommer (1995).↩︎

  7. Report coefficient of variation of \(0.443\) which could be the value of \(\sigma\) in terms of natural logarithms.↩︎

  8. Not shown in paper.↩︎

  9. Typographic error in their Table 1 because only 14 records are listed for rock-like sites↩︎

  10. Report coefficient of variation of \(0.578\) which could be the value of \(\sigma\) in terms of natural logarithms.↩︎

  11. Thenhaus et al. (1989) summarise a model by K.W. Campbell (1984, 1987) where: \(a=-3.303\), \(b=0.85\), \(d=-1.25\), \(h_1=0.0872\), \(h_2=0.678\), \(e_1=0.34\) and includes an anelastic term \(-0.0059 r\) (\(\sigma\) is not reported), which they use for western Saudi Arabia.↩︎

  12. Not shown in paper.↩︎

  13. In the source for this model (Zhang et al. 1999) there is an additional \(-2.049M^2\) term but as this is the same coefficient as the geometric decay term and with this quadratic magnitude term the model predictions very small PGAs it is thought that it is a typographic mistake.↩︎

  14. These are taken from Table 8 of Boore, Joyner, and Fumal (1997) which uses natural logarithms so they were converted into terms of logarithms to base \(10\).↩︎

  15. They state it is ‘ …closest distance from the exposure of ruptured part of the fault …’ so may not be rupture distance.↩︎

  16. The procedure is not entirely clear.↩︎

  17. These are not summarised here as they are in Chinese and are not easily available.↩︎

  18. There could be a typographical error in the article since the use of common (base ten) logarithms leads to very large ground motions — the authors may mean natural logarithms.↩︎

  19. It is stated that common logarithms are used but this standard deviation is extremely high and hence it may actually be in terms of natural logarithms.↩︎

  20. There is a typographical error in Equation 12 of Nowroozi (2005) since this coefficient is reported as \(-1094\).↩︎

  21. Assume that \(147\) reported in paper is a typographical error.↩︎

  22. Assume that \(0140\) reported in paper is a typographical error.↩︎

  23. Assume that \(0290\) reported in paper is a typographical error.↩︎

  24. Assume that \(0232\) reported in paper is a typographical error.↩︎

  25. Model for \(T_5\) reported here is that given in 2009 errata. In original reference: \(T_5=1-(\delta-70)/20\) for \(\delta \geq 70\) and \(1\) otherwise).↩︎

  26. Not \(\,\mathrm{cm/s^2}\) as specified at some points in the article.↩︎

  27. Thought that this just means differentiation.↩︎

  28. Model is given as reported in article because it is not known which coefficients were specified a priori and which found by derivation algorithm.↩︎

  29. There is an inconsistency between the names given to the site coefficients in the tables of this article (\(C_0\), \(C_1\) and \(C_2\)) and those used to describe the functional form (\(e_0\), \(e_1\) and \(e_2\)).↩︎

  30. Typographical error in article (\(E_I\) should be \(E_S\)).↩︎

  31. Same functional form is used for separate models using only surface and only borehole records but without the flags indicating surface or borehole stations.↩︎

  32. \(M_h\) not clearly stated in report but could be \(5.6\) (p. 150).↩︎

  33. Although \(r_{rup}\) is used in Equation 4 of the paper it is probable that the distance metric is actually \(r_{jb}\) since they default to \(r_{epi}\) when the fault geometric is not known.↩︎

  34. This model is listed here, rather than in Chapter 6, because they provide an analytical expression for their model↩︎

  35. This value is given in the text (p. 1903) but they probably mean 199 records since otherwise the total is 669 (also see their Figure 4).↩︎

  36. This \(\sigma\) is very high. It could mean that natural logarithms were used to compute it.↩︎

  37. There appears to be a problem with this model since it seems to always give infinity.↩︎

  38. It is not clear what this is but it appears to be altitude of the site.↩︎

  39. Or \(4\,\mathrm{km}\) — both values are cited.↩︎

  40. It seems that the equation given in the article is missing a \(-\log\sqrt{r_{jb}^2+h^2}\) term since other the predictions do not match those reported and stated that the form of Joyner and Boore (1993) is used.↩︎

  41. It is possible that the coefficients \(d\), \(e\) and \(c\) were assumed a priori and not found by regression since they are the same for the three record subsets.↩︎

  42. This model is listed here, rather than in Chapter 6, because they provide an analytical expression for their model↩︎

  43. These \(\sigma\)s are very large. They are probably given in terms of natural logarithms rather than common logarithms, which are used for the model of the median.↩︎

  44. And possibly from the Pakistan Meteorological Department — it is not clear if these data were used.↩︎

  45. It is not clear if this is the entire depth range.↩︎

  46. Mixture of \(\ln\) and \(\log\) present in original formulation.↩︎

  47. There appears to be something wrong with \(\phi\) and \(\tau\) since \(\sigma_{tot}\) does not equal \(\sqrt{\phi^2+\tau^2}\)↩︎

  48. Article is poorly written and hence it is not clear if this is the correct functional form.↩︎

  49. Because the functional form and classes are decided by an automatic algorithm the coefficients have been included in the equations directly.↩︎

  50. The 2 articles are poorly written and neither cites the other, although they appear to present the same model. It is not easy to understand what data has been used, e.g. it could be that only data from a single location (Terengganu) has been used.↩︎

  51. This is probably the intra-event standard deviation.↩︎

  52. This is probably the inter-event standard deviation.↩︎

  53. They report coefficients for the other methods but they are not given here due to lack of space.↩︎

  54. There is a second set of coefficients for this model. It is not clear which should be used. \(a=3.57937\), \(c_1=-1.4864\), \(c_2=0.231465\), \(h=6.65758\), \(b_1=-0.0240888\), \(b_2=-0.0631411\), \(b_3=0\), \(e_1=0\), \(e_2=0.167762\), \(e_3=0.249286\), \(e_4=0.223014\), \(f_1=-0.0382253\), \(f_2=0.013243\), \(f_3=0\), \(M_{ref}=5.5\), \(M_h=6.75\) and \(R_{ref}=1\).↩︎

  55. Various other components of aleatory variability are reported in the article, which should be consulted for details.↩︎

  56. They also give \(c_3=0.8579\pm 0.2341\).↩︎

  57. The scatter plots of the data show records from distances \(>100\,\mathrm{km}\).↩︎

  58. In the article there is an extra opening bracket in the equations for \(F\) but not a closing bracket so it could be that the term \(a_4+a_5(M-M_h)\) could be all in brackets.↩︎

  59. Equation for \(f_{path}\) not explictly given in the article.↩︎

  60. This is the same definition as the subduction slab so there is likely a typographic error somewhere.↩︎

  61. It is likely that the \(\tau\) and \(\phi\) values reported in Tables 5 and 6 of the article are reversed as they do not correspond to Figure 7 of article. Reported the reversed values here.↩︎

  62. It may be \(25\,\mathrm{Hz}\) as both are stated.↩︎

  63. The residuals in their Figure 5 are almost all positive, meaning systematic under-prediction.↩︎

  64. This is stated to be the ‘standard error’. \(0.176\) is reported as the ‘residual sum of squares’, which could correspond to \(\sigma\).↩︎

  65. This plot, their Figure 6, suggests that there is a strong bias in the model as the vast majority of residuals are positive.↩︎

  66. State that it is Richter magnitude which assume to be \(M_L\)↩︎

  67. Probably \(M_{JMA}\)↩︎

  68. N. N. Ambraseys and Bommer (1995) state that uses 38 earthquakes.↩︎

  69. N. N. Ambraseys and Bommer (1995) state that uses larger component.↩︎

  70. Note only valid for \(R \geq 20\,\mathrm{km}\)↩︎

  71. Note only valid for \(R \leq 200\,\mathrm{km}\)↩︎

  72. Total earthquake components (does not need to be multiplied by two) for magnitude and distance dependence. Uses 2713 underground nuclear explosion records for site dependence.↩︎

  73. Probably \(M_{JMA}\)↩︎

  74. Idriss (1978) finds magnitudes to be mixture of \(M_L\) and \(M_s\).↩︎

  75. Total earthquake components (does not need to be multiplied by two)↩︎

  76. Idriss (1978) believes majority are \(M_s\).↩︎

  77. Probably \(M_{JMA}\)↩︎

  78. Idriss (1978) finds magnitudes to be mixture of \(M_L\), \(m_b\) and \(M_s\).↩︎

  79. Reported in Idriss (1978).↩︎

  80. Does not need to be multiplied by two.↩︎

  81. Assume dip-slip means normal mechanism.↩︎

  82. State that it is Richter magnitude which assume to be \(M_L\)↩︎

  83. Probably \(M_{JMA}\)↩︎

  84. Reported in Joyner and Boore (1988).↩︎

  85. Reported in Joyner and Boore (1988).↩︎

  86. Also derive equations for Japan subduction zones.↩︎

  87. 195 for subduction zone equations.↩︎

  88. \(>\)7.5 for subduction zone equations.↩︎

  89. Call magnitude scale Richter magnitude, which note is equivalent to \(M_w\) for \(M\leq 8.3\), \(M_L\) for \(M<5.9\) and \(M_s\) for \(5.9 \leq M \leq 8.0\).↩︎

  90. About 15km for subduction zone equations.↩︎

  91. About 400km for subduction zone equations.↩︎

  92. \(r_{epi}\) for subduction zone equations.↩︎

  93. Reported in Joyner and Boore (1988).↩︎

  94. Details of dataset are given in tables but quality of scan too poor to clearly see digits.↩︎

  95. Consider equations valid for \(M_w\leq 8\)↩︎

  96. Free (1996) believes it is \(r_{hypo}\).↩︎

  97. This is \(M_s\).↩︎

  98. Total number of components, does not need to be multiplied by two.↩︎

  99. Also present equations for SSE (using 140 records) and NE Iberia (using 107 records).↩︎

  100. Equations stated to be for distances up to \(100\,\mathrm{km}\)↩︎

  101. Distance to centre of array↩︎

  102. Does not need to be multiplied by two.↩︎

  103. Total number of components does not need to be multiplied by two↩︎

  104. Boore, Joyner, and Fumal (1997) revise this magnitude to \(5.87\). New minimum magnitude is \(5.2\).↩︎

  105. Considers equation valid for \(M\geq 4.7\).↩︎

  106. Considers equation valid for \(d\leq 300\,\mathrm{km}\).↩︎

  107. Boore, Joyner, and Fumal (1997) revise this magnitude to \(5.87\). New minimum magnitude is \(5.2\).↩︎

  108. Coefficients given in Boore, Joyner, and Fumal (1994b)↩︎

  109. Free (1996) believes it is largest horizontal component.↩︎

  110. It is not clear whether use Richter magnitude (\(M_L\)) or \(M_w\).↩︎

  111. Some may be \(m_b\) because in their Table 1 some earthquakes to not have \(M_s\) given but do have \(m_b\). If so new minimum is 5.0.↩︎

  112. They state it is ‘closest distance from the exposure of ruptured part of the fault, instead of focal distances’ so may not be rupture distance.↩︎

  113. It is not clear whether use Richter magnitude (\(M_L\)) or \(M_w\).↩︎

  114. Also derive equations for Australia and N. E. China↩︎

  115. N. N. Ambraseys, Simpson, and Bommer (1996) state it is two-stage of Joyner and Boore (1981) but in fact it is two-stage method of Joyner and Boore (1988).↩︎

  116. N. N. Ambraseys, Simpson, and Bommer (1996) state it is two-stage of Joyner and Boore (1981) but in fact it is two-stage method of Joyner and Boore (1988).↩︎

  117. Total number of components. Does not need to be multiplied by two.↩︎

  118. Called Richter magnitude.↩︎

  119. Includes some not used for regression↩︎

  120. Total number of components do not need to be multiplied by two.↩︎

  121. Equations stated to be for distances up to \(100\,\mathrm{km}\)↩︎

  122. Total number of components do not need to be multiplied by two.↩︎

  123. Total number of components do not need to be multiplied by two.↩︎

  124. Also derive equations for Spain.↩︎

  125. Also derive equations using \(M_L\).↩︎

  126. Also derive equations using \(r_{hypo}\).↩︎

  127. Total number of components. Does not need to be multiplied by two.↩︎

  128. Equation given in terms of \(\log M_0\).↩︎

  129. Equation for corrected PGA uses 443 records.↩︎

  130. Equation for corrected PGA uses 439 records.↩︎

  131. Equation for corrected PGA uses data from 36 earthquakes.↩︎

  132. Assuming they use same data as Monguilner et al. (2000).↩︎

  133. P. Smit et al. (2000) give \(r_{hypo}\) but this is typographical error (P. Smit 2000).↩︎

  134. Shallow crustal records.↩︎

  135. Subduction records.↩︎

  136. This is total number of horizontal components used. They come from 47 triaxial records.↩︎

  137. This is total number of components. Does not need to be multiplied by two.↩︎

  138. There are 960 components for uncorrected PGA.↩︎

  139. There are 941 components for uncorrected PGA.↩︎

  140. For horizontal corrected records. There are 49 for horizontal uncorrected PGA. There are 34 for vertical corrected records and 46 for vertical uncorrected PGA.↩︎

  141. The caption of their Table 2 states that reported coefficients are for mean.↩︎

  142. Authors state in text that ‘more than 14 000’ values were used but their Table 1 gives \(2 \times 6899\).↩︎

  143. State equations valid to \(4.5\).↩︎

  144. State equations valid up to \(200\,\mathrm{km}\).↩︎

  145. Call it ‘quadratic mean’, which is assumed to be geometric mean.↩︎

  146. Also develop equations for hard rock sites and intraslab events.↩︎

  147. Also develops equations for Zagros using 98 records from an unknown number of earthquakes.↩︎

  148. Does not need to be multiplied by two.↩︎

  149. Also develop models for the Zagros region of Iran using about 100 records.↩︎

  150. Also derive model using \(M_w\).↩︎

  151. Also derive model using \(r_{epi}\).↩︎

  152. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  153. Believe that model can be used to \(8.0\).↩︎

  154. Recommend that model is not used for distances \(\geq 200\,\mathrm{km}\).↩︎

  155. Believe that model can be extrapolated down to \(4.0\).↩︎

  156. Believe that model can be extrapolated up to \(8.5\) for strike-slip faulting and \(8.0\) for reverse faulting.↩︎

  157. Graizer and Kalkan (2007) state that valid down to \(4.5\).↩︎

  158. Graizer and Kalkan (2007) state that valid up to \(7.6\).↩︎

  159. Graizer and Kalkan (2007) state that valid up to \(200\,\mathrm{km}\).↩︎

  160. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  161. Believe that model can be reliably extrapolated to \(8.5\).↩︎

  162. Not clear from article if the authors mean \(r_{rup}\) or \(r_{jb}\).↩︎

  163. Believe that model can be extrapolated down to \(4.0\).↩︎

  164. Believe that model can be extrapolated up to \(8.5\) for strike-slip faulting and \(8.0\) for reverse faulting.↩︎

  165. Believe that model valid to \(0\,\mathrm{km}\).↩︎

  166. Believe that model valid to \(200\,\mathrm{km}\).↩︎

  167. For stations on surface.↩︎

  168. For borehole stations.↩︎

  169. This is total number of horizontal components used. They come from 47 triaxial records.↩︎

  170. Also derive models for inslab (273 records from 16 earthquakes) and interface (413 records from 40 earthquakes) Mexican earthquakes.↩︎

  171. Not entirely clear in the article if \(r_{rup}\) was actually used.↩︎

  172. Authors also state that 516 records were used. Not clear which is the correct total.↩︎

  173. Probably roughly 5500 based on Sharma et al. (2013).↩︎

  174. Taken from their Table 3.1. Elsewhere in the article the total is given as 23 and 25.↩︎

  175. Or 106. Both are given.↩︎

  176. Do not need to multiply by 2.↩︎

  177. State model applicable up to \(8.5\).↩︎

  178. State model applicable up to \(M_w 8.5\) for strike-slip and reverse and \(M_w 7\) for normal earthquakes.↩︎

  179. State model applicable for \(M_w\geq 3.3\) in California and \(M_w\geq 5.5\) globally.↩︎

  180. State model applicable to \(M_w 8.5\) for strike-slip, \(M_w 8\) for reverse/reverse-oblique and \(M_w 7.5\) for normal/normal-oblique.↩︎

  181. State applicable for \(M_w\geq 3.5\).↩︎

  182. State applicable for \(M_w \leq 8.5\) for strike-slip and \(M_w\leq 8\) for reverse and normal earthquakes.↩︎

  183. State applicable up to \(300\,\mathrm{km}\)↩︎

  184. Recommends model for \(M_w\geq 5\).↩︎

  185. Recommends model up to \(M_w 8\).↩︎

  186. Believe model can be used up to \(M_w 8\).↩︎

  187. Recommend never using model below 4.↩︎

  188. Recommend never using model above 7.↩︎

  189. Recommend never using model for \(r_{jb}<5\).↩︎

  190. Recommend never using model for \(r_{jb}>200\).↩︎

  191. Believe can be used to 5.0.↩︎

  192. Believe can be used to 8.0.↩︎

  193. Believe can be used for \(r_{epi}\geq 10\,\mathrm{km}\).↩︎

  194. Believe can be used for \(r_{epi}\leq 300\,\mathrm{km}\).↩︎

  195. State that valid down to \(5.0\).↩︎

  196. State that valid up to \(8.0\) except for normal faulting where limit is \(7.0\).↩︎

  197. Also derive models for two other sites (SCT and CDAO) in Mexico City.↩︎

  198. Recommend model up to \(M_w 8\)↩︎

  199. Also use 1921 macroseismic intensities.↩︎

  200. Macroseismic intensities from 6 events.↩︎

  201. 7.7 by including macroseismic data.↩︎

  202. Recommends use down to 4.0.↩︎

  203. Believes applies up to 8.2.↩︎

  204. Believes applies down to \(0\,\mathrm{km}\).↩︎

  205. Believe applicable down to 3.3 for California and down to 5.5 globally.↩︎

  206. Believe valid to 8.5 for strike-slip, 8.0 for reverse and 7.5 for normal.↩︎

  207. Believe applicable to \(300\,\mathrm{km}\).↩︎

  208. Recommend model up to \(200\,\mathrm{km}\)↩︎

  209. Probably D50.↩︎

  210. Recommend model for use up to \(8.0\) for strike-slip and reverse and \(7.0\) for normal earthquakes.↩︎

  211. State model applicable up to \(8.5\).↩︎

  212. Recommend use for \(M_w\leq 9\) for interface and \(M_w\leq 8\) for intraslab.↩︎

  213. Call it ‘diagonal’.↩︎

  214. Believe applicable \(\geq 3.6\).↩︎

  215. Believe applicable \(\leq 7.6\).↩︎

  216. Believe applicable \(\geq 6\,\mathrm{km}\).↩︎

  217. Believe applicable \(\leq 200\,\mathrm{km}\).↩︎

  218. Recommend for use \(M_w\geq 5.0\).↩︎

  219. Recommend for use for \(M_w\leq 7.0\)↩︎

  220. Recommend for use for \(r_{jb}\leq 200\,\mathrm{km}\).↩︎

  221. Could be 1288 records.↩︎

  222. This is the total in the Electronic Supplement listing all the data used. In the article it is stated that 5607 records from 146 earthquakes are used.↩︎

  223. Believe model applicable up to \(8.0\) for crustal and intraslab events and \(9.0\) for interface events.↩︎

  224. May be 742 as this is stated in Table 4 of article.↩︎

  225. Call it ‘quadratic mean’, which is assumed to be geometric mean.↩︎

  226. It is probably \(5\%\).↩︎

  227. In paper conversion is made between \(S_v\) and spectral acceleration, \(S_a\), suggesting that it is pseudo-velocity.↩︎

  228. Although coefficients should only differ by a constant because \(\mathrm{PSA}=(2\pi/T) \mathrm{PSV}\) they do not; hence response parameters are probably not those stated.↩︎

  229. \(f_3\) given in Abrahamson and Silva (1997) was modified to ensure homogeneity and a linear variation in \(f_3\) with magnitude.↩︎

  230. It is probably \(5\%\).↩︎

  231. The following values are from their Table 1 which does not match with their Figure 3.↩︎

  232. Probably this is Kolmogorov-Smirnov.↩︎

  233. On page 8 of paper it says 88 periods.↩︎

  234. The authors also give number of ‘sets’ as 81 for shallow crustal, 29 for inter-plate and 29 for deep intra-slab↩︎

  235. Authors call them ‘interplate’.↩︎

  236. Number of typographic errors in report so this may not be correct functional form.↩︎

  237. The actual functional form is not reported in the article but it is stated that it is like the form of Hancock, Bommer, and Stafford (2008).↩︎

  238. Probably pseudo-acceleration since uses NGA West database.↩︎

  239. They state it is two dimensional response spectrum which assume to be resolved component.↩︎

  240. Note only valid for \(R \geq 20\,\mathrm{km}\)↩︎

  241. Note only valid for \(R \leq 200\,\mathrm{km}\)↩︎

  242. Total earthquake components (does not need to be multiplied by two)↩︎

  243. Idriss (1978) finds magnitudes to be mixture of \(M_L\), \(m_b\) and \(M_s\).↩︎

  244. Note only valid for \(R \geq 20\,\mathrm{km}\)↩︎

  245. Note only valid for \(R \leq 200\,\mathrm{km}\)↩︎

  246. Note only valid for \(R \geq 20\,\mathrm{km}\)↩︎

  247. Note only valid for \(R \leq 200\,\mathrm{km}\)↩︎

  248. Reported in Joyner and Boore (1988).↩︎

  249. Reported in Joyner and Boore (1988).↩︎

  250. Details of dataset are given in tables but quality of scan too poor to clearly see digits.↩︎

  251. Consider equations valid for \(M_w\leq 8\)↩︎

  252. Total earthquake components (does not need to be multiplied by two). 79+10 records for \(0.1\,\mathrm{s}\) equation.↩︎

  253. Consider more than 4 natural periods but results not reported.↩︎

  254. Reported in Idriss (1993).↩︎

  255. Does not need to be multiplied by two.↩︎

  256. Distance to centre of array↩︎

  257. Considers equation valid for \(M\geq 4.7\).↩︎

  258. Considers equation valid for \(d\leq 300\,\mathrm{km}\).↩︎

  259. Equations stated to be for distances up to \(100\,\mathrm{km}\)↩︎

  260. Minimum period for vertical equations is \(0.04\,\mathrm{s}\).↩︎

  261. Maximum period for vertical equations is \(3\,\mathrm{s}\).↩︎

  262. Coefficients given in Boore, Joyner, and Fumal (1994b).↩︎

  263. Total number, does not need to be multiplied by two.↩︎

  264. Total number, does not need to be multiplied by two.↩︎

  265. There are 116 records in total.↩︎

  266. Free (1996) believes it is largest horizontal component.↩︎

  267. Total number of components does not need to be multiplied by two↩︎

  268. State equations should not be used for distances \(>100\,\mathrm{km}\)↩︎

  269. Typographic error in Table 3 of Campbell (1997) does not match number of recordings in Table 4↩︎

  270. Typographical error in Figure 3b) of Perea and Sordo (1998) because it does not match their Table 1.↩︎

  271. This is total number of horizontal components used. They come from 47 triaxial records.↩︎

  272. This is total number of components. Does not need to be multiplied by two.↩︎

  273. Total number of records. Does not need to be multiplied by two.↩︎

  274. 485 records in total but do not state number of vertical records from W. USA.↩︎

  275. For horizontal corrected records. There are 34 for vertical corrected records.↩︎

  276. Authors do not state reason for different number of records used for different periods.↩︎

  277. The caption of their Table 2 states that reported coefficients are for mean.↩︎

  278. The authors also report that they used 139 ‘sets’, which could refer to number of records rather than the 293 ‘components’ that they also report.↩︎

  279. Does not need to be multiplied by two.↩︎

  280. Call it ‘quadratic mean’, which is assumed to be geometric mean.↩︎

  281. Does not need to be multiplied by two.↩︎

  282. Also derive model using \(M_w\).↩︎

  283. Also derive model using \(r_{epi}\).↩︎

  284. Their Figure 2 present \(\sigma\)s up to \(2\,\mathrm{s}\) but the coefficients of the model are not given beyond \(1\,\mathrm{s}\).↩︎

  285. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  286. Believe that model can be used to \(8.0\).↩︎

  287. Recommend that model is not used for distances \(\geq 200\,\mathrm{km}\).↩︎

  288. Believe that model can be extrapolated down to \(4.0\).↩︎

  289. Believe that model can be extrapolated up to \(8.5\) for strike-slip faulting and \(8.0\) for reverse faulting.↩︎

  290. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  291. Believe that model can be reliably extrapolated to \(8.5\).↩︎

  292. Due to filtering number of records and earthquakes depends on period.↩︎

  293. Believe that model can be extrapolated down to \(4.0\).↩︎

  294. Believe that model can be extrapolated up to \(8.5\) for strike-slip faulting and \(8.0\) for reverse faulting.↩︎

  295. Believe that model valid to \(0\,\mathrm{km}\).↩︎

  296. Believe that model valid to \(200\,\mathrm{km}\).↩︎

  297. For stations on surface.↩︎

  298. For borehole stations.↩︎

  299. Also develop models for the Zagros region of Iran using 309 records from 190 earthquakes.↩︎

  300. State that only use data with \(M_s\geq 4\) but one earthquake in their Appendix A has \(M_s 3.2\).↩︎

  301. Also derive models for inslab (273 records from 16 earthquakes) and interface (413 records from 40 earthquakes) Mexican earthquakes.↩︎

  302. Or 106. Both are given.↩︎

  303. Do not need to multiply by 2.↩︎

  304. State model applicable up to \(8.5\).↩︎

  305. State model applicable up to \(M_w 8.5\) for strike-slip and reverse and \(M_w 7\) for normal earthquakes.↩︎

  306. State model applicable for \(M_w\geq 3.3\) in California and \(M_w\geq 5.5\) globally.↩︎

  307. State model applicable to \(M_w 8.5\) for strike-slip, \(M_w 8\) for reverse/reverse-oblique and \(M_w 7.5\) for normal/normal-oblique.↩︎

  308. State applicable for \(M_w\geq 3.5\).↩︎

  309. State applicable for \(M_w \leq 8.5\) for strike-slip and \(M_w\leq 8\) for reverse and normal earthquakes.↩︎

  310. State applicable up to \(300\,\mathrm{km}\)↩︎

  311. Recommends model for \(M_w\geq 5\).↩︎

  312. Recommends model up to \(M_w 8\).↩︎

  313. Believe model can be used up to \(M_w 8\).↩︎

  314. In text says 27 periods but coefficients only reported for 23.↩︎

  315. Recommend never using model below 4.↩︎

  316. Recommend never using model above 7.↩︎

  317. Recommend never using model for \(r_{jb}<5\).↩︎

  318. Recommend never using model for \(r_{jb}>200\).↩︎

  319. Believe can be used to 5.0.↩︎

  320. Believe can be used to 8.0.↩︎

  321. Believe can be used for \(r_{epi}\geq 10\,\mathrm{km}\).↩︎

  322. Believe can be used for \(r_{epi}\leq 300\,\mathrm{km}\).↩︎

  323. Also derive models for two other sites (SCT and CDAO) in Mexico City.↩︎

  324. Recommend model up to \(M_w 8\)↩︎

  325. Also use 1921 macroseismic intensities.↩︎

  326. Macroseismic intensities from 6 events.↩︎

  327. 7.7 by including macroseismic data.↩︎

  328. Believe applicable down to 3.3 for California and down to 5.5 globally.↩︎

  329. Believe valid to 8.5 for strike-slip, 8.0 for reverse and 7.5 for normal.↩︎

  330. Believe applicable to \(300\,\mathrm{km}\).↩︎

  331. Recommend model up to \(200\,\mathrm{km}\)↩︎

  332. Probably D50.↩︎

  333. Recommend model for use up to \(8.0\) for strike-slip and reverse and \(7.0\) for normal earthquakes.↩︎

  334. Authors state 28 but coefficients only reported for 23.↩︎

  335. Report coefficients for only 37 periods.↩︎

  336. State model applicable up to \(8.5\).↩︎

  337. Also develop separate models for Zagros and Alborz-central Iran.↩︎

  338. Recommend use for \(M_w\leq 9\) for interface and \(M_w\leq 8\) for intraslab.↩︎

  339. Believe applicable \(\geq 3.6\).↩︎

  340. Believe applicable \(\leq 7.6\).↩︎

  341. Believe applicable \(\geq 6\,\mathrm{km}\).↩︎

  342. Believe applicable \(\leq 200\,\mathrm{km}\).↩︎

  343. Could be 1288 records.↩︎

  344. This is the total in the Electronic Supplement listing all the data used. In the article it is stated that 5607 records from 146 earthquakes are used.↩︎

  345. Believe model applicable up to \(8.0\) for crustal and intraslab events and \(9.0\) for interface events.↩︎

  346. May be 742 as this is stated in Table 4 of article.↩︎

  347. Call it ‘quadratic mean’, which is assumed to be geometric mean.↩︎

  348. This may be an empirical GMPE because it is based on broadband velocity records from which acceleration time-histories are generated by ‘real-time simulation’. This could just mean differentiation.↩︎

  349. This may be an empirical GMPE because it is based on broadband velocity records from which acceleration time-histories are generated by ‘real-time simulation’. This could just mean differentiation.↩︎

  350. This model is derived from both observations and simulations but most of the data, especially for large magnitudes, are simulated hence listed here.↩︎

  351. This model is derived from both observations and simulations but most of the data are simulated hence listed here.↩︎

  352. This model is derived from both observations and simulations but most of the data are simulated hence listed here.↩︎

  353. This model is not included in the main body of the report as it is not clear from text (particularly Figure 3) whether a model for PGA can be expressed in the normal way.↩︎

  354. Note only valid for \(R \geq 20\,\mathrm{km}\)↩︎

  355. Note only valid for \(R \leq 200\,\mathrm{km}\)↩︎

  356. Called \(M_{LH}\) so may be \(M_L\).↩︎

  357. Idriss (1978) finds magnitudes to be mixture of \(M_L\), \(m_b\) and \(M_s\).↩︎

  358. Idriss (1978) finds magnitudes to be mixture of \(M_L\), \(m_b\) and \(M_s\).↩︎

  359. Probably \(M_{JMA}\)↩︎

  360. Reported in (Joyner and Boore 1988).↩︎

  361. Does not need to be multiplied by two.↩︎

  362. Distance to centre of array↩︎

  363. Total number of components does not need to be multiplied by two↩︎

  364. State equations should not be used for distances \(>100\,\mathrm{km}\)↩︎

  365. Equations stated to be for distances up to \(100\,\mathrm{km}\).↩︎

  366. Total number of components do not need to be multiplied by two.↩︎

  367. Total number of components do not need to be multiplied by two.↩︎

  368. Total number of components do not need to be multiplied by two.↩︎

  369. Total number of components do not need to be multiplied by two.↩︎

  370. For horizontal corrected records. There are 34 for vertical corrected records.↩︎

  371. Three other equations for site classes B, D and E.↩︎

  372. Authors state in text that ‘more than 14 000’ values were used but their Table 1 gives \(2 \times 6899\).↩︎

  373. State equations valid to \(4.5\).↩︎

  374. State equations valid up to \(200\,\mathrm{km}\).↩︎

  375. Call it ‘quadratic mean’, which is assumed to be geometric mean.↩︎

  376. Does not need to be multiplied by two.↩︎

  377. Also develop models for the Zagros region of Iran using about 100 records.↩︎

  378. Also derive model using \(M_w\).↩︎

  379. Also derive model using \(r_{epi}\).↩︎

  380. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  381. Believe that model can be used to \(8.0\).↩︎

  382. Recommend that model is not used for distances \(\geq 200\,\mathrm{km}\).↩︎

  383. Believe that model can be extrapolated down to \(4.0\).↩︎

  384. Believe that model can be extrapolated up to \(8.5\) for strike-slip faulting and \(8.0\) for reverse faulting.↩︎

  385. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  386. Believe that model can be reliably extrapolated to \(8.5\).↩︎

  387. Believe that model can be extrapolated down to \(4.0\).↩︎

  388. Believe that model can be extrapolated up to \(8.5\) for strike-slip faulting and \(8.0\) for reverse faulting.↩︎

  389. Believe that model valid to \(0\,\mathrm{km}\).↩︎

  390. Believe that model valid to \(200\,\mathrm{km}\).↩︎

  391. Also model for Central USA using 14 records and 296 scaled records↩︎

  392. Also develop models for the Zagros region of Iran using 309 records from 190 earthquakes.↩︎

  393. State that only use data with \(M_s\geq 4\) but one earthquake in their Appendix A has \(M_s 3.2\).↩︎

  394. Adjustment of GMPE of B. S.-J. Chiou and Youngs (2008) for \(M_w<6\)↩︎

  395. Believe that model can be used to \(8.0\).↩︎

  396. Recommend that model is not used for distances \(\geq 200\,\mathrm{km}\).↩︎

  397. Recommend that model is not extrapolated below \(5\) due to lack of data.↩︎

  398. Believe that model can be reliably extrapolated to \(8.5\).↩︎

  399. Taken from their Table 3.1. Elsewhere in the article the total is given as 23 and 25.↩︎

  400. State model applicable up to \(8.5\).↩︎

  401. State model applicable up to \(M_w 8.5\) for strike-slip and reverse and \(M_w 7\) for normal earthquakes.↩︎

  402. State model applicable for \(M_w\geq 3.3\) in California and \(M_w\geq 5.5\) globally.↩︎

  403. State model applicable to \(M_w 8.5\) for strike-slip, \(M_w 8\) for reverse/reverse-oblique and \(M_w 7.5\) for normal/normal-oblique.↩︎

  404. State applicable for \(M_w\geq 3.5\).↩︎

  405. State applicable for \(M_w \leq 8.5\) for strike-slip and \(M_w\leq 8\) for reverse and normal earthquakes.↩︎

  406. State applicable up to \(300\,\mathrm{km}\)↩︎

  407. Recommends model for \(M_w\geq 5\).↩︎

  408. Recommends model up to \(M_w 8\).↩︎

  409. Believe model can be used up to \(M_w 8\).↩︎

  410. Believe model can be used up to \(M_w 8\).↩︎

  411. Use an additional 60 records to validate model.↩︎

  412. Recommend never using model below 4.↩︎

  413. Recommend never using model above 7.↩︎

  414. Recommend never using model for \(r_{jb}<5\).↩︎

  415. Recommend never using model for \(r_{jb}>200\).↩︎

  416. Believe applicable down to 3.3 for California and down to 5.5 globally.↩︎

  417. Believe valid to 8.5 for strike-slip, 8.0 for reverse and 7.5 for normal.↩︎

  418. Believe applicable to \(300\,\mathrm{km}\).↩︎

  419. Believe applicable down to 3.3 for California and down to 5.5 globally.↩︎

  420. Believe valid to 8.5 for strike-slip, 8.0 for reverse and 7.5 for normal.↩︎

  421. Believe applicable to \(300\,\mathrm{km}\).↩︎

  422. Also derive models for two other sites (SCT and CDAO) in Mexico City.↩︎

  423. Recommend model up to \(M_w 8\)↩︎

  424. Also use 1921 macroseismic intensities.↩︎

  425. Macroseismic intensities from 6 events.↩︎

  426. 7.7 by including macroseismic data.↩︎

  427. Believes applies up to 8.2.↩︎

  428. Believes applies down to \(0\,\mathrm{km}\).↩︎

  429. Recommends use down to 4.0.↩︎

  430. Believes applies up to 8.2.↩︎

  431. Recommend model up to \(200\,\mathrm{km}\)↩︎

  432. Recommend model for use up to \(8.0\) for strike-slip and reverse and \(7.0\) for normal earthquakes.↩︎

  433. Also develop separate models for Zagros and Alborz-central Iran.↩︎

  434. Believe applicable \(\geq 3.6\).↩︎

  435. Believe applicable \(\leq 7.6\).↩︎

  436. Believe applicable \(\geq 6\,\mathrm{km}\).↩︎

  437. Believe applicable \(\leq 200\,\mathrm{km}\).↩︎

  438. Isoseismals not intensity data points.↩︎

  439. Table 1 includes a radius of \(171.98\,\mathrm{km}\) but this looks like a typo.↩︎

  440. State model applicable for \(M_w\geq 3.3\) in California and \(M_w\geq 5.5\) globally.↩︎

  441. State model applicable to \(M_w 8.5\) for strike-slip, \(M_w 8\) for reverse/reverse-oblique and \(M_w 7.5\) for normal/normal-oblique.↩︎

  442. This is the total in the Electronic Supplement listing all the data used. In the article it is stated that 5607 records from 146 earthquakes are used.↩︎

  443. Believe model applicable up to \(8.0\) for crustal and intraslab events and \(9.0\) for interface events.↩︎

  444. Call it ‘quadratic mean’, which is assumed to be geometric mean.↩︎